Table of Contents

EXECUTIVE SUMMARY ... I

PROJECT PERSONNEL ... III

ABBREVIATIONS ... IV

1.0 INTRODUCTION

1.1 STUDY PURPOSE AND METHODS .. 1.1

2.0 ENVIRONMENTAL ASSESSMENT FRAMEWORK

2.1 REQUIREMENTS ... 2.1

2.2 MUNICIPAL CLASS ENVIRONMENTAL ASSESSMENT PROCESS 2.1

2.2.1 The Process ... 2.2

2.2.2 Determining Project Schedule ... 2.4

3.0 HISTORICAL SUMMARY

3.1 LOCATION AND PHYSIOGRAPHY ... 3.1

3.2 19TH CENTURY DEVELOPMENT ... 3.2

3.3 20TH CENTURY DEVELOPMENT ... 3.4

3.4 SITE HISTORY ... 3.5

3.5 STRUCTURE TYPE ... 3.6

3.6 BRIDGE DESIGNER .. 3.6

4.0 SITE DESCRIPTION

4.1 LANDSCAPE CONTEXT .. 4.1

4.2 BRIDGE NO. 13 ... 4.4

4.3 MODIFICATIONS .. 4.7

5.0 SUMMARY OF CULTURAL HERITAGE VALUE

5.1 SUMMARY .. 5.1

5.2 STATEMENT OF CULTURAL HERITAGE VALUE OR INTEREST .. 5.1

6.0 ASSESSMENT AND MITIGATION

6.1 DESCRIPTION OF THE PROPOSED UNDERTAKING .. 6.1

6.2 IMPACT ASSESSMENT .. 6.1

6.2.1 Summary of Impact Assessment ... 6.3

6.3 ALTERNATIVES AND MITIGATION .. 6.4

6.4 MITIGATION MEASURES .. 6.6

6.4.1 Retention of the Existing Bridge with Sympathetic Modifications 6.6

6.4.2 Documentation and Salvage ... 6.6

7.0 RECOMMENDATIONS .. 7.1

8.0 CLOSURE ... 8.1
9.0 REFERENCES

LIST OF TABLES
Table 1: Evaluation of Potential Direct Impacts
Table 2: Evaluation of Potential Indirect Impacts
Table 3: Considered Alternatives from the Ontario Heritage Bridge Guidelines
Table 4: Alternative Recommendations

LIST OF APPENDICES

APPENDIX A MUNICIPAL HERITAGE BRIDGES CULTURAL, HERITAGE AND ARCHAEOLOGICAL RESOURCES ASSESSMENT CHECKLIST
Executive Summary

In 2018, the Town of The Blue Mountains retained Stantec Consulting Ltd. (Stantec) to complete environmental studies associated with the Municipal Class Environmental Assessment (MCEA) process for three bridges in the Town of The Blue Mountains, Ontario. The completion of the Municipal Heritage Bridges Cultural, Heritage and Archaeological Resources Assessment Checklist for the three bridges determined that a Cultural Heritage Evaluation Report (CHER) was needed for each bridge. The CHER for Bridge Number (No.) 13 was completed by Stantec in 2018.

Bridge No. 13 was evaluated against Ontario Regulation (O. Reg.) 9/06 and the Ontario Heritage Bridge Guidelines. The bridge was found to have Cultural Heritage Value or Interest (CHVI) as it met criteria (iii.i) of O. Reg. 9/06. As a bridge with CHVI, it was determined that Bridge No. 13 required a Heritage Impact Assessment (HIA) in the event that removal and/or modifications are proposed to the structure.

Presently, the Town of The Blue Mountains is undertaking a MCEA for Bridge No. 13 to determine the preferred method of improvement to address the structural condition and roadway safety at the bridge. The alternatives being considered include:

1) Do nothing
2) Rehabilitate the existing bridge
3) Replace with single lane bridge
4) Replace with two lane bridge
5) Rehabilitate the bridge and download to property owners on the east side of the watercourse

The bridge is in fair condition and the roadside safety on the bridge and approaches do not meet current standards. As an approach has not been determined for the bridge, this HIA addresses potential impacts to the heritage attribute identified for the bridge, namely its connection to the rural character of the area as a one lane bridge with timber decking and no safety barriers. This type of structure, still utilized by vehicles, is found in rural areas of the province where traffic is minimal and is indicative of its time and place.

Based on the alternative selected by the Town of The Blue Mountains, the below table provides an overview of recommendations for each alternative. Until the Town of The Blue Mountains identifies a preferred plan for Bridge No. 13, which could potentially
involve its rehabilitation or removal due to its condition and safety concerns, retention of the bridge with sympathetic modifications is the preferred option.

<table>
<thead>
<tr>
<th>Approach</th>
<th>Alternative</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing</td>
<td>1) Do nothing</td>
<td>No mitigation measures required.</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>2) Rehabilitate the Existing Bridge</td>
<td>Sympathetic modifications to balance conservation of its CHVI with updated safety regulations.</td>
</tr>
<tr>
<td></td>
<td>5) Rehabilitate the bridge and download to property owners on the east side of the watercourse</td>
<td></td>
</tr>
<tr>
<td>Removal</td>
<td>3) Replace with single lane bridge</td>
<td>Documentation and salvage activities. Documentation activities should consist of the full heritage recording of the bridge through photography, photogrammetry, or LiDAR scan. Salvage activities should consist of the identification and recovery of re-useable bridge components by a reputable salvage company or charity. Materials that should be considered for salvage include the steel girders and timbering decking. The documentation and salvage work should be carried out under the direction of a Cultural Heritage Specialist in good professional standing with the Canadian Association of Heritage Professionals.</td>
</tr>
<tr>
<td></td>
<td>4) Replace with two lane bridge</td>
<td></td>
</tr>
</tbody>
</table>
Project Personnel

Project Manager: Laura Walter, MA
Heritage Consultant: Meaghan Rivard, MA, CAHP
Task Manager: Laura Walter, MA
Report Writer: Laura Walter, MA
GIS Specialist: Andrew White, BA, M.Sc.
Administrative Assistant: Carol Naylor
Quality Reviewer: Jeffrey Muir, BA, CAHP
Independent Reviewer: Colin Varley, MA, RPA
Abbreviations

CHER Cultural Heritage Evaluation Report
CHVI Cultural Heritage Value or Interest
HIA Heritage Impact Assessment
MCEA Municipal Class Environmental Assessment
MTCS Ministry of Tourism, Culture and Sport
O. Reg. Ontario Regulation
1.0 Introduction

1.1 Study Purpose and Methods

In 2018, the Town of The Blue Mountains retained Stantec Consulting Ltd. (Stantec) to complete environmental studies associated with the Municipal Class Environmental Assessment (MCEA) process for three bridges in the Town of The Blue Mountains, Ontario. The completion of the Municipal Heritage Bridges Cultural, Heritage and Archaeological Resources Assessment Checklist (the checklist) for the three bridges determined that a Cultural Heritage Evaluation Report (CHER) was needed for each bridge. The Checklist and CHER for Bridge Number (No. 13) were completed by Stantec in 2018 (Stantec 2018).

Bridge No. 13 was evaluated against Ontario Regulation (O. Reg.) 9/06 and the Ontario Heritage Bridge Guidelines for Provincially Owned Bridges (OHBG) (Ontario Ministry of Transportation 2008). The bridge was found to have Cultural Heritage Value or Interest (CHVI) as it met criteria (iii.i) of O. Reg. 9/06. As a bridge with CHVI, it was determined that Bridge No. 13 required a Heritage Impact Assessment (HIA) in the event that removal and/or modifications are proposed to the structure.

Presently, the Town of The Blue Mountains is undertaking a MCEA for Bridge No. 13 to determine the preferred method of improvement to address the structural condition and roadway safety at the bridge. The bridge is in fair condition and the roadside safety on the bridge and approaches do not meet current standards. As an approach has not been determined for the bridge, this HIA addresses potential impacts to the heritage attribute identified for the bridge, namely its connection to the rural character of the area as a one lane bridge with timber decking and no safety barriers. This type of structure, still utilized by vehicles, is found in rural areas of the province where traffic is minimal and it is indicative of its time and place.

This report is a HIA that evaluates the impacts to Bridge No. 13 and proposes mitigation options. The Town of The Blue Mountains does not presently have a Terms of Reference for preparing HIAs. The preparation of this report will be guided by the Ministry of Tourism, Culture and Sport’s (MTCS) Info Sheet #5 in Heritage Resources in the Land Use Planning Process, Cultural Heritage and Archaeology Policies of the Ontario Provincial Policy Statement, 2005 (Government of Ontario 2006) (Info Sheet #5).

As per the guidance contained in Info Sheet #5, this report contains the following components:

- historical research, site analysis, and evaluation
- identification of the significant and heritage attributes of the cultural heritage resource
Heritage Impact Assessment, Town of The Blue Mountains, Bridge 13

- description of the proposed development or site alteration
- measurement of development or site alteration impact
- consideration of alternative, mitigation, and conservation methods
- implementation and monitoring
- summary statement and conservation recommendations

Bridge No. 13 is situated on Main Street, 400 metres east of Grey Road 13, in the Town of The Blue Mountains, Ontario (Figure 1). The bridge was constructed in 1950 and is a steel beam/girder bridge supported on concrete abutments with a timber deck. A site assessment was undertaken on March 29, 2018, by Cultural Heritage Specialists Laura Walter and Frank Smith of Stantec. The weather conditions were overcast, cool, and foggy. Historical research was conducted at the Town of The Blue Mountains Public Library, Grey County Archives, and supplemented by material available through online resources.
2.0 Environmental Assessment Framework

2.1 Requirements

The requirement to consider cultural heritage in Class EAs is discussed in the Municipal Class Environmental Assessment Manual (MCEA Manual) (Municipal Engineers Association [MEA] 2015) and the revised 2014 Provincial Policy Statement (PPS) (Government of Ontario 2014). The MCEA Manual considers the cultural environment, including built heritage resources and cultural heritage landscapes, as well as archaeological resources, as one in a series of environmental factors to be considered when undertaking a Class EA, particularly when describing existing and future conditions, development alternatives, and determination of the preferred alternative.

The MCEA Manual further suggests that cultural heritage resources that retain heritage attributes should be identified early in the EA process and that these resources should be avoided where possible. Where avoidance is not possible, potential impacts to these attributes should be identified and minimized. Adverse impacts should be mitigated per provincial and municipal guidelines.

2.2 Municipal Class Environmental Assessment Process

In 2000, the Minister of the Environment and Climate Change approved the MCEA proposed by the MEA. This included a provision to complete a heritage assessment for any bridge over the age of 40 years. Since this time, a series of amendments and clarifications have been made to the MCEA process. One of these clarifications was released in 2003 by the MEA regarding the inclusion of a 40-year threshold for schedule determination. The intent of the MEA was to provide for the protection of potentially significant bridges throughout the province; the 40-year threshold is generally accepted by both the federal and provincial authorities as a preliminary screening measure for CHVI. The MCEA Manual was most recently updated in 2015.

To provide clarity regarding the 40-year threshold for schedule determination, the MEA released guidelines in the form of a series of questions contained within a Checklist. This Checklist assists the proponent in the determination of future study requirements is provided in Appendix A. The MCEA requirements for bridges are covered in Part B of the Checklist. In this section, there are 19 “Descriptions” to which answers of “Yes” or “No” are required. Requirements for additional studies are determined based on the responses to each question. There are three basic steps to carrying out the requirements of the Checklist and these are outlined in Section 2.2.1.
2.2.1 The Process

Step 1: Undertake *Municipal Heritage Bridges Cultural, Heritage and Archaeological Checklist* (Part B) to determine if the bridge may have CHVI.

1. If no potential for CHVI is identified, then the proposed work can be a considered a Schedule A or A+ Class EA and no further investigation regarding cultural heritage is required.
 - **Schedule A:**
 - These projects are limited in scale, have minimal adverse environmental effects, and include a number of municipal maintenance and operational activities. These projects are pre-approved and may proceed to implementation without following the full Class EA planning process. Schedule A projects generally include normal or emergency operational and maintenance activities (MEA 2015: A-3).
 - **Schedule A+:**
 - These projects are similar to Schedule A projects in that they are pre-approved. Where they differ is in notice issued to the public. Schedule A+ projects include municipal infrastructure projects where, although the public has no ability to change the outcome, they are notified of planned work. These EAs are typically approved by municipal councils through budget or special project funding. There is also more flexibility in the ways in which the public is notified of this work and varies greatly from one municipality to the next (MEA 2015: A-4).

2. If potential for CHVI is identified, then proceed to Step 2.

Step 2: Undertake a cultural heritage evaluation of the bridge against *Ontario O. Reg. 9/06* of the *Ontario Heritage Act* and prepare a CHER.

1. If the bridge is determined not to contain CHVI as per O. Reg. 9/06 then the CHER should be submitted to the proponent for review and approval. No further work is required and an EA is not triggered from a cultural heritage perspective.
 2. If the bridge is determined to contain CHVI as per O. Reg. 9/06, prior to schedule determination, further work will be required in the form of a HIA. Once the proponent understands the proposed (or potential) scope of work, proceed to Step 3.

Step 3: Undertake a HIA to assess the impacts of the proposed change/impact, identify mitigation measures, and establish a conservation strategy, if needed.

1. If no impacts to the heritage attributes identified in the CHER will result from the proposed work, then the HIA should be submitted to the proponent for review and approval. No further work is required and the proposed work can be considered a Schedule A or A+ EA from a cultural heritage perspective.
Heritage Impact Assessment, Town of The Blue Mountains, Bridge 13

2. If the HIA determines that the project has the potential to impact the resource, proceed to Schedule B or C to consider alternative solutions. As part of the HIA, mitigation measures to lessen the impacts of the proposed undertaking and a conservation strategy should be prepared. The HIA should be submitted to the proponent for review and approval and to the MTCS for review and comment.

- Schedule B:
 - These projects have the potential for some adverse environmental impacts. The proponent is required to undertake a screening process involving mandatory contact with directly affected public and relevant review agencies (i.e., the MTCS), to make them aware of the project and that their concerns are addressed. If there are no outstanding concerns, then the proponent may proceed to implementation. Schedule B projects generally include improvements and minor expansions to existing facilities (MEA 2015: A-4).

- Schedule C:
 - These projects have the potential for significant environmental effects and must proceed under the full planning and documentation procedures specified in the MCEA Manual. Schedule C projects require the preparation and filing of an Environmental Study Report (ESR) for review by the public and relevant agencies. Schedule C projects generally include the construction of new facilities and major expansions to existing facilities (MEA 2015: A-4).

This report represents “Step 3” of the MCEA process. The result is a HIA that identifies impacts and mitigation measures to conserve the cultural heritage value of the Bridge No. 13. A flowchart depicting the MCEA Process as it pertains to municipal bridges is provided in Plate 1 below.
2.2.2 Determining Project Schedule

Generally, the MCEA Project Schedule is determined by the magnitude of the environmental impacts resulting from the project. As such, projects with minimal impacts are carried out under Schedules A or A+, projects with moderate adverse impacts are carried out under Schedule B, and projects with the potential for significant environmental effects are carried out under Schedule C.

In the case of bridges found to have CHVI, all reconstruction and/or alteration activities to the structure, or grading activities adjacent to the structure, should be carried out under Schedules B or C. As indicated in Appendix 1 of the Municipal Class Environmental Assessment Manual, projects involving a bridge with CHVI costing less than $2.4 million should be carried out under Schedule B and projects costing greater than $2.4 million should be carried out under Schedule C (MEA 2015). While the magnitude of the impact to the bridge and the cost of the project can be used to determine whether to proceed under Schedule B or C, the MCEA Manual notes that the divisions among project Schedules is often not distinct and proponents are encouraged to document their rationale for the selection (MEA 2015: Appendix 1).
3.0 **Historical Summary**

3.1 **Location and Physiography**

Bridge No. 13 is situated on Main Street, 400 metres east of Grey Road 13 in the Town of The Blue Mountains, Ontario (Figure 1). It crosses over a tributary of the Beaver River in the small community of Heathcote. The bridge is located on Lot 23, Concession 12, in the former Township of Collingwood, in Grey County. The Study Area boundary was defined by the bridge structures and the embankments surrounding the structures.

The Study Area is situated within the Beaver Valley physiographic region of central Ontario (Chapman and Putnam 1984: 113). The region covers 124 square kilometres and contains a sharply cut indentation in the Niagara cuesta that opens onto Georgian Bay. At its widest point, between Griersons Rock on the west and Blue Mountain peaks on the east, the valley is about 6.4 kilometres across. From there the valley tapers to the south and ends near Flesherton. The upper rim of the valley is the edge of the Amabel Formation, which appears as a vertical cliff between 50 and 100 feet in height. Below the upper rim is the Manitoulin Formation in the form of a flat shelf. Behind the Blue Mountain peaks is a section of this horizontal shelf, that stands at an elevation of over 1,400 feet above sea level. The edge of the Manitoulin shelf has a steep descent with the sides of the valley composed of softer shales (Chapman and Putnam 1984: 122). The Blue Mountain peaks rise from 725 to 1425 feet above sea level. To the east the highest point of the Niagara Escarpment is near Osler Bluff, at 1700 feet above sea level (Shannon 1979: 32).

The Study Area is situated within a clay plain area, bordered to the north by till moraines, to the east by till plains, and to the south and west by the Niagara Escarpment. The valley is primarily made up of clay loam soils, while on the upper slopes the soils are similar to the red clay soil of the Niagara Escarpment (Chapman and Putnam 1984: 123-124). The region has a moderate climate influenced by Georgian Bay. The area between the bay and the escarpment has a longer frost-free period and fewer temperature extremes. This climate is favourable for apple growing in the region (Shannon 1979: 37).

The Beaver River watershed is the largest watershed in the Town of The Blue Mountains, covering an area of 617 square kilometres. Its headwaters form in a wetland complex east of Feversham, in the Municipality of Grey Highlands to the south, from which the river flows southwest to Lake Eugenia, an artificial lake created in 1915 following the construction of a dam by the Hydro-Electric Power Commission of Ontario. The water travels over the Eugenia Falls and descends into Beaver Valley through the Eugenia Hydro-Electric Generating Station. The river continues northward through the valley to Georgian Bay. From its headwaters to its mouth the Beaver River travels 76 kilometres and undergoes a change in elevation of 334 metres (Allerton 2015: 9).
3.2 19th Century Development

The Study Area is located on Lot 23, Concession 12, in the former Township of Collingwood, in Grey County. Provincial land surveyor Charles Rankin was instructed to survey the township and the adjacent Township of St. Vincent to provide land for descendants of United Empire Loyalists and retired military and naval officers (Belden & Co. 1880). Rankin began the survey of the township in August 1833 using a double-front system technique that divided the land into 10 equal lots surrounded by roads (Plate 2). Concessions in the township were laid out on a north-south axis and numbered east to west. The township has an irregular layout due to its northern boundary of Georgian Bay. Concession 1 has only 21 lots, while moving west, Concession 12 has 41 lots. After laying out the concessions, Rankin established a baseline at the south end of the township, now the Osprey-The Blue Mountains Townline. Rankin then surveyed the sideroads, between lots 6 and 7, 12 and 13, 18 and 19, 24 and 25, 30 and 31, and 36 and 37. He completed the survey on October 19, 1833 (Shannon 1979: 15).

Plate 2: Double-front survey system (Dean 1969)

The township was initially known as the Township of Alta, named for the high land within its boundary (Marsh 1931: 38). In 1834, the township was renamed in honour of Vice Admiral Cuthbert Collingwood (1748-1810), who fought alongside Lord Nelson during the Napoleonic Wars. A letter was sent on April 28, 1834 from Colonel William Rowan, on behalf of the Lieutenant Governor, to the surveyor general S.P. Hurd, noting the name change to the Township of Collingwood (Shannon 1979: 17).

Following the completion of the survey, Rankin settled on Lot 38, Concession 11 where he constructed the first log cabin in the township and began farming the property. Rankin was granted the lot in 1837, followed by Lot 37, Concession 11 in 1841. The property on the shoreline of Georgian Bay became known as Rankin’s Landing, and is now known as Lora Bay (Shannon 1979: 15). After Rankin, only a few settlers arrived in the township in the 1830s, due to the number of absentee land owners and the clergy reserves in the township. Of the lots in the township, approximately 111.5 were military
grants, 98.5 United Empire Loyalists grants, 50 clergy reserves, 11.5 heir and devisee grants, 10 free grants, and 3 grants under new regulations (Shannon 2000: 72).

After Rankin, the next European settler in the township was Richard McGuire, who arrived in 1834 and settled on Lot 35, Concession 11. He was followed by John Brazier on Lots 19 and 21, Concession 2, and John O'Grady on Lot 25, Concession 7 (Shannon 1979: 41). Settlement was slow in the township due to the lack of roadways for settlers to access lots in the township. In 1835, to increase accessibility, Rankin surveyed the Lakeshore Road that joined with Sunnidale Road at Nottawasaga Bay. To the south, the Old Mail Road was the principal public road through the township by 1846. The Old Mail Road was opened in the 1830s, following an Indigenous trail running diagonally across the township from Lot 1, Concession 5, and through the study area to Lot 24, Concession 12. This roadway was very influential to the development of the study area. It helped to increase settlement and accessibility to the community of Heathcote (Williamstown) that was established along the roadway in the mid-19th century.

In 1846, the township had only 940 acres taken up out of a total of 68,600 (Smith 1846: 38). With the passing of the Municipal Corporations Act in 1850, the Township of Collingwood, with a population of 545, was too small to be considered its own municipality, and was joined with the Township of St. Vincent. That year, William Rorke of Heathcote was the representative for the Township of Collingwood. By 1854, the township was incorporated with an increased population. The first council met in January 1854 at James Wilson’s tavern in Heathcote, just west of the the Study Area. The primary concern of this early council was road development in the township. At this time, many sections of concession roads were not opened and those that were open were barely passable (Shannon 1979: 58). Through statute labour, overseen by pathmasters, residents in the township had to devote a certain amount of time and their own tools to opening roadways (Bradford 2015:12). As concession and side roads were opened in the 1850s, the Old Mail Road declined in importance and is not depicted on late 19th century mapping (Figure 2). In 1860, the Lakeshore Road was graveled between the towns of Collingwood and Meaford (Shannon 1979: 53). Alongside roadway development, the clergy reserves in the township were sold between 1847 and 1865, creating more available land for settlers (Shannon 2000: 72).

By 1861, the township reached a population 1,492, with 5,357 acres under cultivation (Smith 1865:57). Its primary villages were Thornbury, Clarksburg, and Heathcote (Shannon 1979: 53). Agriculture remained the primary economy in the township into the late 19th century. By 1865, land in the township was being rapidly improved by settlers. By this time a wharf had been erected at Thornbury, whereby steamers from Collingwood and Owen Sound made daily trips (Smith 1865: 57). Accessibility and the movement of goods in the township increased with the construction of the Northern Railway line through Thornbury, between Collingwood and Meaford in 1871 (Shannon 1979: 84). That year the township reached a population of 3,575. The township reached its highest 19th century population of 4,915 in 1881(Shannon 2000:53).
In relation to the Study Area, the community of Heathcote developed at the intersection of the Old Mail Road and the Beaver River, along the border of the Townships of Collingwood and Euphrasia. Originally known as Williamstown, it was the first community that developed in the Township of Collingwood. Its first settler, John Eaton, arrived in 1844, and settled on Lot 24, Concession 1 in the former Township of Euphrasia. Eaton constructed his residence on the north side of the Old Mail Road and it served as a stopping place for travelers along the roadway. The following year, Warren Lougheed and James Wilson settled on Lot 23, Concession 12, including Wilson within the Study Area on the west half of the lot. In 1847, William Rorke settled on Lot 24, Concession 23 to the north and was joined by his brother Richard Rorke the following year on Lot 25, Concession 12 (Alderice et al. 1989: 113). On April 6, 1848, the first post office in the Townships of Collingwood and Euphrasia was established in William Rorke’s residence. Rorke also set up the first store in the community and served as a banker and public notary. In the early 1850s, Wilson subdivided the northwest portion of Lot 23, Concession 12, facilitating development along Main Street to the east (Shannon 1979: 145). In 1861, with the establishment of other post offices in the Townships of Collingwood and Euphrasia, the community was renamed as Heathcote (Alderice et al. 1989: 115). By 1865, the community included a post office, two stores, a tavern, a blacksmith, an inn, and shoemaker (Smith 1865: 126-127). Heathcote remained a small community into the late 19th century, with a population in 1887 of about 150 (Union Publishing Co. 1887: A139). Its importance in the township was overtaken to the north by Thornbury, which had a population that year of about 1,100, and Clarksburg with a population of about 700 (Union Publishing Co. 1887: A120/A30).

3.3 20th Century Development

During the 20th century, the Study Area continued to be part of the small community of Heathcote, surrounded by a rural landscape made up of primarily agricultural lands. Heathcote’s population declined throughout the 20th century as larger communities in the township and larger neighbouring towns, including Collingwood and Meaford, attracted residents with more services and job opportunities. Heathcote’s population decreased from 154 in 1946 to 117 in 1996 (Flynn 1999: 15).

Outside of Heathcote, the Township of Collingwood similarly saw a decline of growth into the 20th century, with a population in 1911 of below 3,000 (Shannon 200: 53). The apple industry was an important component of the township’s economy in the 20th century. The orchards stretched across the Beaver Valley region between Georgian Bay and the Niagara Escarpment. Orchards were first established in the region in the mid-19th century, but the industry was more commercialized in the early 20th century with infrastructure constructed to process apples, including dehydrating, canning, juicing, and fermentation (Eckert et al. 2011: 7-8).

A shift occurred in the township’s economy in the mid-20th century from being based on manufacturing and agriculture to tourism. The tourism industry was influenced by the
development of Blue Mountain Resort, established in 1941 by Jozo Weider. The first recreational skiing on the escarpment of Blue Mountains began in the early 1930s, but it was through the arrival and influence of Weider that Blue Mountains became a popular tourist location. With higher disposable incomes available to people in the 1960s, the Blue Mountain Resort went through an expansion with the construction of chairlifts, an inn, and a snowmaking system (Matto 2007: 99). In 1999, the Weider family sold 50% of their interest in the resort, along with 32 acres of land that was previously a hay field, to Intrawest. Intrawest, a company out of Vancouver, developed major ski resorts, including those at Whistler Blackcomb Mountain in British Columbia and Mont Tremblant in Quebec. On the obtained land, Intrawest developed a slope-side village, with commercial spaces and condominiums (Matto 2007: 100). Since the partnership in 1999, the number of tourists to the Blue Mountain Resort has significantly increased, from 600,000 visitors in 2003 to over 1.5 million visitors in 2006 (Matto 2007: 102).

In 1998, the Town of The Blue Mountains was formed, following the amalgamation of the Town of Thornbury and the Township of Collingwood (Dahms 2001: 70). Population growth at the end of the 20th century and into the 21st century has been influenced by tourism, agriculture, and small boutique shopping (Association of Municipalities of Ontario n.d.). In 2001, out of the town’s overall population of 13,645, about half of that number – 6,116 – were permanent residents (Association of Municipalities of Ontario n.d.; Statistics Canada 2016).

3.4 Site History

The Study Area is located on the west half of Lot 23, Concession 12, in the former Township of Collingwood, in Grey County. The current bridge was constructed through the study area in 1950. A previous bridge structure existed across the Beaver River tributary in the early 20th century as depicted on the 1941 topographic map of the study area (Figure 3).

The west half of Lot 23, Concession 12, in the former Township of Collingwood was granted as a patent to James Wilson. When Wilson purchased the property, a right-of-way of 33 feet was reserved in the centre of the lot extending from the main roadway through Heathcote (Shannon 1979: 142). Wilson was an early settler in the community of Heathcote, arriving in 1845 (Alderice et al. 1989: 113). In about 1850, Wilson subdivided the northwest portion of his property into village lots fronting the road allowance of Main Street. Wilson constructed a log house on Lot 11 of Plan 1944, on the south side of Main Street near the eastern limits of the plan. In the early 1850s, Wilson expanded his residence into a tavern (Alderice et al. 1989: 116).

Wilson (age 43) is listed on the 1851 Census of Canada East, Canada West, New Brunswick, and Nova Scotia as a farmer, along with his wife Frances (age 28) and their children Rebecca (age 15), Jane (age 13), Alice (age 11), Robert (age 9), Elizabeth (age 7), and William (age 3). The family is listed as living in a one storey log residence.
Wilson is listed on the 95-acre property, with 16 acres of crops under cultivation, including seven acres of wheat, six acres of oats, and one acre of potatoes. The family farm also produced wool, maple syrup, and butter, and had four oxen, two cows, eight sheep, and four pigs (Library and Archives Canada 1851).

When the first Township of Collingwood council met in January 1854, it was at Wilson's tavern. Wilson was also a member on the first council, listed as a farmer and innkeeper. Wilson operated the tavern until 1856, and then returned to full-time farming (Shannon 1979: 145). Wilson (age 52) is listed on the 1861 Census of Canada as a farmer, along with his wife Frances (age 37), and their children Alice (age 20), Robert (age 18), Elizabeth (age 16), William (age 13), James (age 9), Henry (age 5), and Francis A. (age 1). The family is listed as a living in a two storey log residence. Wilson is listed on the 50-acre property, with 30 acres of crops under cultivation, including six acres of fall wheat, three acres of spring wheat, five acres of barley, one acre of peas, five acres of oats, and a half acre of potatoes (Library and Archives Canada 1861).

Wilson is listed on the property as a freeholder in the Gazetteer and Directory of the County of Grey 1865-66 (Smith 1865: 63). Wilson sold the property in 1866 to John Irwin. In the 1870s, Irwin sold the property in severed parcels to various landowners (Ontario Land Registry Access 2018). The 1880 Township of Collingwood map in the Illustrated Historical Atlas of the Counties of Grey & Bruce lists William C. Hewish on the property (Figure 2). Hewish had purchased the property in 1881 from Abraham Holden. Hewish is listed as a freeholder on the property in the 1887 Farmers and Business Directory for the Counties of Grey, Ontario & Simcoe (Union Publishing Co.1887: 23). The property passed through various landowners in the late 19th century.

3.5 Structure Type

Bridge No. 13, Heathcote Bridge, is a steel beam/girder bridge with I-girders and a timber deck that was constructed in 1950. Beam and girder bridges are one of the most common styles of bridge construction. Beam and girder construction consists of a series of solid members running longitudinally the length of the span, often with bracing between the parallel members (Heritage Resources Centre n.d.: 31). Each beam or girder is fastened to the abutments or piers and the deck is laid down on top. These bridges are more complex than a simple slab bridge but use less material than slab bridges. Typically, beam and girder bridges are used for spans of greater than 10 metres (Heritage Resources Centre n.d.: 31). There are a variety of beam and girder styles, which include I-Beams, Box-style, Rectangular, and T-shape. Beam and girder bridges are usually made of concrete or steel (Heritage Resources Centre n.d.: 31).

3.6 Bridge Designer

No drawings are available for the bridge and no bridge designer was determined.
Notes

Township of Collingwood 1880
Bridge 13 Heathcote Bridge

Figure Not to Scale
Notes

PREPARED BY
 Prepared by MDW on 2019-05-28
Technical Review by AW on 2019-05-28
Independent Review by ABC on yyyy-mm-dd

Study Area 1941
Bridge 13 Heathcote Bridge
4.0 Site Description

The following description of Bridge No. 13 is based on the 2017 Bridge & Culvert Inspections Report prepared for the Town of The Blue Mountains by C.C. Tatham & Associates Limited, and a site visit completed on March 29, 2018.

4.1 Landscape Context

Bridge No. 13, Heathcote Bridge, is located on Main Street, approximately 400 metres east of Grey Road 13, in the former Township of Collingwood, now the Town of The Blue Mountains. The bridge is situated at the east end of the community of Heathcote, and crosses over a tributary of the Beaver River. The main branch of the Beaver River flows through Heathcote, west of the study area, under Grey Road 13. The tributary associated with the bridge branches off from the Beaver River north of Heathcote and flows southeast towards Side Road 21 (Plate 3 and Plate 4). The creek is a shallow slow-flowing watercourse that meanders alongside fields and woodlots.

The community of Heathcote, once a thriving village in the 19th century, is now a small rural/residential community (Plate 5). Main Street in the early to mid-19th century was part of the Old Mail Road that extended in the former Township of Collingwood from Lot 1, Concession 5, to Lot 24, Concession 12. Only a small section of the Old Mail Road remains northwest of Heathcote (Plate 6). A provincial plaque situated adjacent to the Old Mail Road commemorates the road’s history (Plate 7). From Grey Road 13, Main Street is an asphalt roadway until its intersection with Church Street. East of Church Street, Main Street is a gravel roadway that connects to the bridge (Plate 8).

Plate 3: Beaver River tributary, looking northwest
Plate 4: Beaver River tributary flowing south of bridge, looking southeast
The bridge extends from Main Street east towards the private driveway of 158 Main Street, also known as Haworth Glen (Plate 9). Directly northeast of the bridge is a timber frame barn with a side gable roof that is clad in metal (Plate 10). The barn has a stone foundation and a salt box addition on its north elevation. The addition is clad in metal and has a concrete foundation. The south elevation of the barn has a metal silo. Adjacent to the barn is a side gable outbuilding clad in metal, with a concrete foundation, and a metal silo. The barn and portions of the property are bordered with wood post and wire fencing and cedar split rail fencing (Plate 11). Adjacent to the barn are pasture lands. The residence associated with 158 Main Street is situated far back from the roadway on a rise. The late 19th century structure is a one and half storey residence with a side gable roof and central gabled dormer. The red brick structure has a three-bay front façade with a central entrance (Plate 12).
Southwest of the bridge is 124 Main Street that includes a modern side gable outbuilding surrounded by fields (Plate 13). Northwest of the bridge is 135 Main Street, a mid-20th century residence (Plate 14). The east side of the property is bordered in cedar split rail fencing.

Plate 9: West approach to bridge with sign for 158 Main Street, looking east

Plate 10: Timber frame barn northeast of bridge, looking northeast

Plate 11: Adjacent pasture lands and barn, looking northeast
4.2 Bridge No. 13

Detailed information regarding Bridge No. 13 was taken from the 2017 *Bridge & Culvert Inspections Report* prepared by C.C. Tatham & Association Limited for the Town of The Blue Mountains. The construction date provided in the report for the bridge is 1950.

Bridge No. 13 is a one span steel beam/girder bridge with a timber deck (Plate 14). The total deck length is 9.2 metres and the overall structure width is 5.3 metres. The clear span length is 8.7 metres. The bridge is oriented in an east to west direction and carries one lane of traffic over a creek tributary to the Beaver River (Plate 16 and Plate 17).

The timber bridge deck is composed of a six-by-six timber plank decking (Plate 18 and Plate 19). A timber plank is used to delineate the north and south edges of the bridge deck. The deck has no barriers. The superstructure consists of steel I-girders, approximately 9.7 metres in length (Plate 20). The substructure of the bridge consists of
the abutments, which are made of cast in place concrete. Both abutments have south wingwalls composed of cast in place concrete, measuring 3.0 metres in length and 2.4 metres in height (Plate 21 and Plate 22). The north side of the bridge has no wingwalls (Plate 23). Stone boulders line the embankments near the abutments (Plate 15, Plate 21, and Plate 22).

Plate 15: South side of bridge, looking southwest
Heritage Impact Assessment, Town of The Blue Mountains, Bridge 13

Plate 16: West approach to bridge, looking east

Plate 17: East approach to bridge, looking west

Plate 18: Bridge deck, looking west

Plate 19: Bridge deck at west end

Plate 20: Steel girder, looking west

Plate 21: East abutment and southeast wingwall
4.3 Modifications

Minor modifications have been made to the bridge. Between 2013 and 2018, approximately 13 wood planks were replaced on the bridge deck (C.C. Tatham & Associates Ltd. 2017).
5.0 Summary of Cultural Heritage Value

5.1 Summary

The CHER prepared for Bridge No. 13 by Stantec in 2018 found that this bridge has CHVI under O. Reg. 9/06. The cultural heritage value of the bridge is based on its contextual value as the bridge supports the rural character of the area as a one lane structure with timber decking and no safety barriers. No design/physical value or historic/associative value was identified for Bridge No. 13 (Stantec 2018).

The following statement of cultural heritage value was prepared for Bridge No. 13 based on the research and evaluation completed in 2018 by Stantec as part of the CHER.

5.2 Statement of Cultural Heritage Value or Interest

Bridge No. 13 contains a single-span beam/girder bridge with steel I-girders and a timber deck. The bridge, situated at the east end of the rural community of Heathcote, extends Main Street over a tributary of the Beaver River. Bridge No. 13 supports the rural character of the area as a one-lane, timber deck bridge with no safety barriers. This type of structure, still utilized by vehicles, is only found within rural areas of the province, and is indicative of its time and place.

The heritage attribute of the Bridge No. 13 includes:

- Its connection to the rural character of the surrounding area.
6.0 Assessment and Mitigation

6.1 Description of the Proposed Undertaking

The Town of The Blue Mountains is undertaking a MCEA for Bridge No. 13 to determine the preferred method of improvement to address structural condition and roadway safety at the bridge. The timber bridge deck is in fair condition, and roadside safety on the bridge and approaches does not meet current standards. As a preferred approach has not been determined, this HIA considers the five proposed alternatives and includes associated mitigation measures. The alternatives being considered include:

1) Do nothing
2) Rehabilitate the existing bridge
3) Replace with single lane bridge
4) Replace with two lane bridge
5) Rehabilitate the bridge and download to property owners on the east side of the watercourse

6.2 Impact Assessment

The assessment of impacts on heritage resources is based on the impacts defined in Info Sheet #5 (Government of Ontario 2006). Impacts to heritage resources may be direct or indirect. Direct impacts include:

- **Destruction** of any, or part of any, significant heritage attributes or features
- **Alteration** that is not sympathetic, or is incompatible, with the historic fabric and appearance

Indirect impacts to cultural heritage resources do not result in the direct destruction or alteration of the feature or its heritage attributes, but may indirectly affect the cultural heritage value of a property by causing:

- **Shadows** created that alter the appearance of a heritage attribute or change the viability of a natural feature or plantings, such as a garden
- **Isolation** of a heritage attribute from its surrounding environment, context or a significant relationship
- **Direct or indirect obstruction** of significant views or vistas within, from, or of built and natural features
Heritage Impact Assessment, Town of The Blue Mountains, Bridge 13

- **A change in land** use such as rezoning a battlefield from open space to residential use, allowing new development or site alteration to fill in the formerly open spaces

- **Land disturbances** such as a change in grade that alters soil, and drainage patterns that adversely affect an archaeological resource

(Government of Ontario 2006)

For the evaluation of impacts the five alternatives were grouped into three approaches: do nothing (Alternative 1), rehabilitation (Alternatives 2 and 5) and removal (Alternatives 3 and 4). Table 1 and Table 2 provide an overview of potential direct and indirect impacts related to the Bridge No. 13. The following acronyms are used in the tables to denote the assessment of impacts: NA = Not Anticipated, A = Anticipated Impact, P = Potential Impact.

Table 1: Evaluation of Potential Direct Impacts

<table>
<thead>
<tr>
<th>Approach</th>
<th>Destruction</th>
<th>Alteration</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing</td>
<td>NA</td>
<td>NA</td>
<td>If the bridge is retained in situ with no alterations, no impacts will therefore be anticipated. Therefore, no mitigation measures are required.</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>P</td>
<td>P</td>
<td>The 2017 Bridge & Culvert Inspections Report recommends the replacement of the bridge decking, due to its poor condition and the installation of safety barriers. These alterations may impact the identified heritage value, and the connection of the bridge to the rural character of the surrounding area. Therefore, mitigation measures are required.</td>
</tr>
<tr>
<td>Removal</td>
<td>A</td>
<td>NA</td>
<td>Removal of the bridge would result in the destruction of the identified heritage attribute. Therefore, mitigation measures are required.</td>
</tr>
</tbody>
</table>
Table 2: Evaluation of Potential Indirect Impacts

<table>
<thead>
<tr>
<th>Approach</th>
<th>Shadows</th>
<th>Isolation</th>
<th>Obstruction</th>
<th>Change in Land Use</th>
<th>Land Disturbances</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>If the bridge is retained in situ with no alterations, no impacts will therefore be anticipated. Therefore, no mitigation measures are required.</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>If the bridge is rehabilitated there will be a potential direct impact. This direct impact is not anticipated to have any associated indirect impacts. The bridge will not be impacted by shadows, a change in land use, or land disturbances. While the rehabilitated structure will remain within its current environment and context. No significant views were identified in relation to the bridge, thus there is no impact for obstruction. Therefore, no mitigation measures are required.</td>
</tr>
<tr>
<td>Removal</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>If the bridge is removed there will be a direct impact. Once removed, indirect impacts will not be concerned. Therefore, no mitigation measures are required.</td>
</tr>
</tbody>
</table>

6.2.1 Summary of Impact Assessment

Following the assessment of impacts presented in Table 1 and Table 2, direct impacts are anticipated for Alternatives 3 and 4, related to the rehabilitation or removal of Bridge No. 13. Potential direct impacts may be applicable for Alternatives 2 and 5, if the structure is rehabilitated. If the Town of The Blue Mountains determines that the bridge needs to be removed or rehabilitated for its condition and safety reasons following the
MCEA process, this will have a direct impact on its identified CHVI and heritage attributes. Therefore, mitigation measures are required for Alternatives 2, 3, 4, and 5.

6.3 Alternatives and Mitigation

As the Town of The Blue Mountains does not have specific heritage bridge guidelines, the OHBG were used to provide guidance on the alternatives that should be considered when impacts are anticipated to a bridge with cultural heritage value. The OHBG have eight conservation options for bridges that are subject to repair, rehabilitation, or proposed replacement (Ontario Ministry of Transportation 2008). The alternatives are arranged in a continuum from strategies with the least impact to the structure and its heritage value (most preferable), to those with the most impact (least preferable) (Table 3).

Table 3: Considered Alternatives from the Ontario Heritage Bridge Guidelines

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Retention of the existing bridge with no major modifications undertaken</td>
<td>The retention of Bridge No. 13 with no major modifications is not feasible since the 2017 Bridge & Culvert Inspections Report recommends the replacement of the bridge decking, due to its poor condition and the installation of safety barriers. Accordingly, this alternative is not suitable for Bridge No. 13.</td>
</tr>
<tr>
<td>2. Restoration of missing or deteriorated elements where physical or documentary evidence (e.g. photographs or drawings) existing for their design</td>
<td>The current bridge is in fair condition, while the deck is in poor condition as it is not sufficiently connected to the steel beams. There are concerns regarding the condition and safety of this bridge. In addition, no archival photographs or original drawings are available for this bridge. Accordingly, this alternative is not suitable for the Bridge No. 13.</td>
</tr>
<tr>
<td>3. Retention of the existing bridge with sympathetic modification</td>
<td>The retention of Bridge No. 13 with sympathetic modifications is a possible mitigation measure for this structure. For this approach, the timber decking should be maintained since this would be in keeping with the rural character of the bridge within the surrounding area. While a suitable alternative, this</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>recommendation may not be possible due to the safety concerns of the structure. Accordingly, this alternative is suitable for the Bridge No. 13.</td>
<td></td>
</tr>
<tr>
<td>4. Retention of the existing bridge with sympathetically designed new structure in proximity</td>
<td>The retention of the Bridge No. 13 with a sympathetically designed new structure in proximity is not suitable since the bridge is part of the Main Street in the community of Heathcote. Accordingly, this alternative is suitable for Bridge No. 13.</td>
</tr>
<tr>
<td>5. Retention of existing bridge no longer for vehicular purposes but adapted for a new use.</td>
<td>The retention of Bridge No. 13 for non-vehicular use is not appropriate since this bridge is part of Main Street and serves a utilitarian purpose. Accordingly, this alternative is not suitable for Bridge No. 13.</td>
</tr>
<tr>
<td>6. Retention of bridge as heritage monument for viewing purposes only</td>
<td>The retention of the Bridge No. 13 as a heritage monument for viewing purposes only is not appropriate since this bridge is part of Main Street and serves a utilitarian purpose. Accordingly, this alternative is not suitable for Bridge No. 13.</td>
</tr>
<tr>
<td>7. Relocation of smaller, lighter single span bridges to an appropriate new site for continued use or adaptive re-use</td>
<td>This option is not applicable due to the condition of the bridge structure, and lack of safety barriers. Accordingly, this alternative is not suitable for Bridge No. 13.</td>
</tr>
<tr>
<td>8. Bridge removal and replacement with a sympathetically designed structure a) Where possible, salvage elements/members of bridge for incorporation into new structure or for future conservation work or displays; and, b) Undertake full recording and documentation of existing structure</td>
<td>As the bridge was determined not to have design/physical value, but rather serves a simple utilitarian purpose, the new bridge does not have to be sympathetically designed. As identified in Table 1, the removal of the bridge would result in the destruction of the heritage attribute. Prior to the removal of the bridge, a full recording and documentation of the existing structure and its landscape</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Comments</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>setting should be completed to create a public record of the structure, and where possible material should be salvaged including steel girders and timber decking. This alternative is suitable for Bridge No. 13.</td>
</tr>
</tbody>
</table>

6.4 Mitigation Measures

6.4.1 Retention of the Existing Bridge with Sympathetic Modifications

Generally, retention of the bridge is the preferred option when addressing any structure where CHVI has been identified, even if limited. Until the Town of The Blue Mountains identifies a preferred plan for Bridge No. 13, which could potentially involve its removal due to condition and safety concerns, retention of the bridge with sympathetic modifications is the preferred option. Due to the current poor condition of the bridge and its lack of safety barriers, sympathetic modifications are recommended to balance the conservation of its CHVI with updated safety regulations. This is particularly the case for its timber decking, which is an important component of its rural character within the surrounding rural area.

As it was determined that the bridge did not have design/physical value, but rather contextual value, safety is the deciding factor of its potential rehabilitation or removal. If Bridge No. 13 is to be removed the next proposed mitigation measure is the preferred option.

6.4.2 Documentation and Salvage

Detailed documentation and salvage is often the preferred mitigation strategy where retention or relocation is not feasible or warranted. Documentation creates a public record of the structure, which provides researchers and the general public with a land use history, construction details, and photographic record of the resource. Through the selective salvage of identified heritage attributes and other materials, the CHVI of the property can be retained, if in a different context. Documentation and salvage acknowledges the heritage attribute in its current context and, where feasible, allows for re-use. Documentation should be carried out in advance of any changes made to the property.

While documentation and salvage is not a preferred mitigation option, it is an appropriate strategy, as retention *in situ* is not a feasible option for a bridge when there
are safety concerns. If documentation and salvage is selected as the approach documentation of the existing conditions of the bridge and landscape setting should be carried out prior to any alteration or construction activity.

As no materials were identified to be of museum quality, salvage can be completed at the discretion of Town of The Blue Mountains. Salvage activities may be undertaken by a reputable salvage company or charity. In order to facilitate salvage activities, the following is a recommended list of materials to be salvaged, where feasible.

- Steel girders
- Timber decking
7.0 Recommendations

Bridge No. 13 has CHVI per O. Reg. 9/06. Until the Town of The Blue Mountains identifies a preferred plan for Bridge No. 13, which could potentially involve its rehabilitation or removal due to its condition and safety concerns, retention of the bridge with sympathetic modifications is the preferred option. Sympathetic modifications should seek to maintain the connection to the rural character of the area through size, scale, and relationship to surrounding landscape. Should the Town choose to rehabilitate the structure, detailed design should be reviewed by a Heritage Professional, and a summary of findings appended to this HIA. Should the Town download the bridge to surrounding property owners, a copy of this report emphasizing the CHVI of the structure should be provided to property owners. Future modifications to the structure should follow the recommendations contained within this HIA.

Based on the alternative selected by the Town of The Blue Mountains, Table 4 provides an overview of recommendations for each alternative.

Table 4: Alternative Recommendations

<table>
<thead>
<tr>
<th>Approach</th>
<th>Alternative</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do Nothing</td>
<td>1) Do nothing</td>
<td>No mitigation measures required.</td>
</tr>
<tr>
<td>Rehabilitation</td>
<td>2) Rehabilitate the existing bridge</td>
<td>Sympathetic modifications to balance conservation of its CHVI with updated safety regulations.</td>
</tr>
<tr>
<td></td>
<td>5) Rehabilitate the bridge and download to property owners on the east side of the watercourse</td>
<td></td>
</tr>
<tr>
<td>Removal</td>
<td>3) Replace with single lane bridge</td>
<td>Documentation and salvage activities. Documentation activities should consist of the full heritage recording of the bridge through photography, photogrammetry, or LiDAR scan. Salvage activities should consist of the identification and recovery of re-useable bridge components by a reputable salvage company or charity. Materials that should be considered for salvage include the steel girders and timbering</td>
</tr>
<tr>
<td></td>
<td>4) Replace with two lane bridge</td>
<td></td>
</tr>
</tbody>
</table>
Heritage Impact Assessment, Town of The Blue Mountains, Bridge 13

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>decking. The documentation and salvage work should be carried out under the direction of a Cultural Heritage Specialist in good professional standing with the Canadian Association of Heritage Professionals.</td>
</tr>
</tbody>
</table>
8.0 Closure

This report has been prepared for the sole benefit of the Town of The Blue Mountains, and may not be used by any third party without the express written consent of Stantec Consulting Ltd. Any use which a third party makes of this report is the responsibility of such third party.

We trust this report meets your current requirements. Please do not hesitate to contact us should you require further information or have additional questions about any facet of this report.

Yours truly,

STANTEC CONSULTING LTD.

Jeffrey Muir, BA, CAHP
Project Archaeologist
Phone: 905-381-3209
Jeffrey.muir@stantec.com

Colin Varley, MA, RPA
Senior Associate, Environmental Services
Phone: 613-738-6087
Colin.varley@stantec.com
9.0 References

Department of National Defence. 1941. *Collingwood, Ontario*. Surveyed in 1940, with aerial photography by R.C.A.F.

Library and Archives Canada. 1851. *1851 Census of Canada East, Canada West, New Brunswick and Nova Scotia*. Microfilm C-11723.

Heritage Impact Assessment, Town of The Blue Mountains, Bridge 13

Municipal Heritage Bridges
Cultural, Heritage and Archaeological
Resources Assessment Checklist

This checklist was prepared in March 2013 by the Municipal Engineers Association to assist with determining the requirements to comply with the Municipal Class Environmental Assessment. View all 4 parts of the module on Structures Over 40 Years at www.municipalclassea.ca to assist with completing the checklist.

Project Name: Town of the Blue Mountains Bridge Cultural Heritage Assessments

Location: Bridge No. 13, Main Street

Municipality: Town of the Blue Mountains

Project Engineer: Jeffery Fletcher

Checklist completed by: Cultural Heritage Specialist Laura Walter and Project Archaeologist Paul Ritchie

Date: February 27, 2018.

NOTE: Complete all sections of Checklist. Both Cultural Heritage and Archaeological Sections must be satisfied before proceeding.

Part A - Municipal Class EA Activity Selection

<table>
<thead>
<tr>
<th>Description</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>
| Will the proposed project involve or result in construction of new water crossings? This includes ferry docks. | ☐ | Schedule B or C

☐ | Next

| Will the proposed project involve or result in construction of new grade separation? | ☐ | Schedule B or C

☐ | Next

| Will the proposed project involve or result in construction of new underpasses or overpasses for pedestrian recreational or agricultural use? | ☐ | Schedule B or C

☐ | Next

| Will the proposed project involve or result in construction of new interchanges between any two roadways, including a grade separation and ramps to connect the two roadways? | ☐ | Schedule B or C

☐ | Next
Part B - Cultural Heritage Assessment

<table>
<thead>
<tr>
<th>Description</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the proposed project involve a bridge construction in or after 1956?</td>
<td>☑ Next</td>
<td>☒ Prepare CHER Undertake HIA</td>
</tr>
<tr>
<td>Does the project involve one of these three bridge types?</td>
<td>☑ Rigid frame Next</td>
<td>☒ Prepare CHER Undertake HIA</td>
</tr>
<tr>
<td></td>
<td>☑ Simple Support Next</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☑ Structural Steel Next</td>
<td></td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is subject of</td>
<td>☑ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>a covenant or agreement between the owner of the property and a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>conservation body or level of government?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is listed on a register or inventory of heritage properties maintained by the municipality?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is designated under Part IV of the Ontario Heritage Act?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is subject to a notice of intention to designate issued by a municipality?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is located within a designated Heritage Conservation District?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is subject to a Heritage Conservation District study area by-law?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is included in the Ministry of Tourism, Culture and Sport’s list of provincial heritage properties?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is part of a National Historic Site?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is part of a United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage Site?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is designated under the Heritage Railway Station Protection Act?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Description</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is identified as a Federal Heritage Building by the Federal Heritage Building Review Office (FHBRO)</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☑ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is the subject of a municipal, provincial or federal commemorative or interpretive plaque that speaks to the Historical significance of the bridge?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☑ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain a parcel of land that is in a Canadian Heritage River watershed?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☑ Next</td>
</tr>
<tr>
<td>Will the project impact any structures or sites (not bridges) that are over forty years old, or are important to defining the character of the area or that are considered a landmark in the local community?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☑ Next</td>
</tr>
<tr>
<td>Is the bridge or study area adjacent to a known burial site and/or cemetery?</td>
<td>☐ Prepare CHER Undertake HIA</td>
<td>☑ Next</td>
</tr>
<tr>
<td>Is the bridge considered a landmark or have a special association with a community, person or historical event in the local community?</td>
<td>☑ Prepare CHER Undertake HIA</td>
<td>☐ Next</td>
</tr>
<tr>
<td>Does the bridge or study area contain or is it part of a cultural heritage landscape?</td>
<td>☑ Prepare Cher Undertake HIA</td>
<td>☐ Assess Archaeological Resources</td>
</tr>
</tbody>
</table>
PART C - HERITAGE ASSESSMENT

<table>
<thead>
<tr>
<th>Description</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the Cultural Heritage Evaluation Report identify any Heritage Features on the project?</td>
<td>☒ Undertake HIA TBD following completion of CHER</td>
<td>☐ Part D - Archaeological Resources</td>
</tr>
<tr>
<td>Does the Heritage Impact Assessment determine that the proposed project will impact any of the Heritage Features that have been identified?</td>
<td>☒ Schedule B or C TBD following completion of CHER and/or HIA</td>
<td>☐ Part D - Archaeological Resources</td>
</tr>
</tbody>
</table>

PART D - ARCHAEOLOGICAL RESOURCES ASSESSMENT

<table>
<thead>
<tr>
<th>Description</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Will any activity, related to the project, result in land impacts/significant ground disturbance?</td>
<td>☒ Next</td>
<td>☐ Schedule A - proceed</td>
</tr>
<tr>
<td>Have all areas, to be impacted by ground disturbing activities, been subjected to recent extensive and intensive disturbances and to depths greater than the depths of the proposed activities?</td>
<td>☐ Schedule A - proceed</td>
<td>☒ Next</td>
</tr>
<tr>
<td>Has an archaeological assessment previously been carried out that includes all of the areas to be impacted by this project?</td>
<td>☐ Next</td>
<td>☒ Archaeological Assessment</td>
</tr>
<tr>
<td>Does the report on that previous archaeological assessment recommend that no further archaeological assessment is required within the limits of the project for which that assessment was undertaken, and has a letter been issued by the Ministry of Tourism, Culture and Sport stating that the report has been entered into the Ontario Public Register of Archaeological Reports?</td>
<td>☐ Schedule A - proceed</td>
<td>☐ Obtain satisfaction letter - proceed</td>
</tr>
</tbody>
</table>

Include Documentation Summary in Project File