Phase II Environmental Site Assessment

Applewood Thornbury Thornbury, Ontario

Prepared For:

Manorwood Homes Inc.

DS Project No: 20-265-400

Date: 2020-11-13

DS CONSULTANTS LTD. 6221 Highway 7, Unit 16 Vaughan, Ontario, L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Executive Summary

DS Consultants Ltd. (DS) was retained by Manorwood Homes Inc. to complete a Phase II Environmental Site Assessment (ESA) of the Property located on the northwest corner of the intersection of Huron Street East and Elgin Street North in the village of Thornbury, Ontario. The parcel has been named "Applewood Thornbury" by the client, and is herein referred to as the "Site". The Site has no municipal address and is bound by Huron Street East to the north, Elgin Street North to the east, commercial structures and King Street East to the south, and residential properties to the west. DS understands that this work has been requested for due diligence purposes in association with the proposed acquisition of the Site.

This Phase II ESA was conducted in general accordance with the CSA Standards Association protocols outlined in the document "Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2013)" dated 2000, and reaffirmed in 2013. It should be noted that the CSA methodology is sufficient for due diligence purposes, but cannot be used to support the filing of a Record of Site Condition for the Site. The objective of this Phase II ESA is to confirm whether contaminants are present, and at what concentration are they present on the Site, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase I ESA.

The Site is an irregular shaped 1.204 hectare (2.98 acres) parcel of land situated within a mixed residential and commercial neighbourhood. The Site is located approximately 60 m north of the intersection of Elgin Street North and King Street East, and was vacant at the time of this investigation.

The Phase I ESA completed in October 2020, indicated that the Site has been vacant, with the exception of a railway track traversing the southern border of the Property, since 1877. A total of thirteen (13) Potentially Contaminating Activities (PCAs) were identified in the Phase I ESA, which were considered to be contributing to six (6) APECs on the Site. A summary of the APECs, associated PCAs, and contaminants of potential concern (COPC) identified is presented in the table below:

Table E-1: Summary of APECs

able E-1: Summary of APECS					
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase I Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	West side of the Property	PCA-1, 2: #28 - Gasoline and associated products storage in fixed tanks PCA-6: N/S - Fuel Leak PCA-7: #22 - Fertilizer Manufacturing, Processing and Bulk Storage	Off-Site	Metals, PHCs, BTEX	Groundwater
APEC-2	Centre south portion of the Property	PCA-3: #58 – Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of waste, other than use of biosoils as soil conditioners	Off-Site	PHCs, VOCs, Metals	Groundwater
APEC-3	East side of the Property	PCA-4, 5: #33 – Metal Treatment, Coating, Plating, and Finishing	Off-Site	Metals, As, Sb, Se, PHCs, VOCs, PAHs	Groundwater
APEC-4	Southern border of the Property	PCA-10: #46 – Rail Yards, Tracks and Spurs	Off-Site	Metals, PHCs, BTEX, PAHs	Soil
APEC-5	Entire Property	PCA-11: #30 – Importation of Fill Material of Unknown Quality	On-Site	Metals, As, Sb, Se, B-HWS, CN, EC, Cr (VI), Hg, low or high pH, SAR, PHCs, VOCs, PAHs	Soil
APEC-6	Vicinity of previous test pits	PCA-13: N/S-Known soil contamination	On-Site	PAHs	Soil

Based on the findings of the Phase I ESA it was concluded that a Phase II ESA is warranted in order to assess the soil and groundwater conditions on the Site.

This investigation involved the advancement of three (3) boreholes, which were completed on October 1 and October 2, 2020, and nine (9) test pits, completed on October 29, 2020. The boreholes and test pits were advanced to maximum depths of 7.5 and 2.5 (respectively) metres below ground surface (mbgs) respectively, under the supervision of DS personnel.

Groundwater monitoring wells were installed in the three (3) boreholes to facilitate the collection of groundwater samples.

Soil samples were collected and submitted for chemical analysis as follows:

- Nine (9) samples (including 1 QAQC duplicate) for analysis of metals and inorganics
- Eight (8) samples for analysis of petroleum hydrocarbons (PHCs)
- Three (3) samples for analysis of volatile organic compounds (VOCs)
- Thirteen (13) samples (including 1 QAQC duplicate) for analysis of polycyclic aromatic hydrocarbons (PAHs)

Groundwater samples were collected from the three (3) monitoring wells installed as part of this investigation and submitted for analysis of metals and inorganics, PHCs, VOCs and PAHs.

The soil and groundwater analytical results were compared to the "Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional" provided in the MECP document entitled, "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act" dated April 15, 2011 (Table 2 RPI Standards) for coarse textured soils in a residential/parkland/institutional property use.

Based on the results of the information gathered through the course of the investigation, DS presents the following findings:

♦ A layer of topsoil approximately 50 to 300 mm in thickness was encountered at the surface of all boreholes and test pits advanced, with the exception of test pits TP3-2 and TP5, where topsoil was observed below a surficial layer of fill. The fill material encountered at TP3-2 and TP5 extended from the surface to approximately 1.5 mbgs, and contained clayey silt, trace sand, trace gravel and debris such as pieces of asphalt. A layer of possible alluvial deposits consisting of sand and gravel with cobbles and boulders was found below the topsoil and varied in thickness across the Site. Underlying the possible alluvial deposit layer was a clayey silt unit that extended to the maximum explored depth of 7.5 mbgs in BH20-1 and to a depth of approximately 4.9 and 2.3 mbgs in boreholes BH20-2 and BH20-3 respectively. Beneath the clayey silt unit in BH20-2 and BH20-3 a silty sand/sandy silt/sand layer containing rock fragments, was encountered and extended to the explored depth of the boreholes. Bedrock was not visually observed at any of the borehole locations, however auger refusal occurred in borehole BH20-3 at 6.7 mbgs, possibly indicating that bedrock was encountered at this depth;

- V
- Groundwater levels were measured from the three (3) monitoring wells installed on Site. The depth to groundwater was found to range between 2.30 and 4.30 mbgs on October 6, 2020;
- ◆ The groundwater flow direction was inferred based on the topography of the Site and surrounding properties, and the location of the nearest body of water (Georgian Bay, approximately 170 m north of the Property). The inferred groundwater flow direction is north, towards Georgian Bay;
- The results of the soil chemical analyses indicated the following:
 - Two (2) samples (TP6 and TP7) exceeded Table 2 RPI SCS for lead and mercury. All of the remaining samples analysed met the MECP Table 2 RPI SCS.
 - Four (4) samples (TP3-2, TP6, TP7, and TP8) exceeded Table 2 RPI SCS for various PAH parameters. All of the remaining samples analysed met the MECP Table 2 RPI SCS.
- All of the groundwater samples analysed met the MECP Table 2 Standards.

Based on the findings of this Phase II ESA DS provides the following recommendations and conclusions:

- ♦ Soil impacts were identified on-Site at depths ranging between 0-1.2 mbgs. Additional vertical delineation is recommended to understand the depth of the soil impacts. The impacted soils may require off-site disposal in the future at the time of Site development. Disposal premiums may be incurred for the disposal of impacted soils.
- Given the historic industrial use as a railway line, future residential development will trigger the requirement for the filing of a Record of Site Condition with the Ministry of Environment, Conservation and Parks. Additional Environmental Site Assessment in accordance with O.Reg. 153/04 (as amended), followed by soil remediation or completion of a risk assessment will be required in the future to support the filing of a Record of Site Condition.
- The results of the groundwater sampling completed to date has indicated that the soil impacts identified do not appear to have adversely affected the groundwater quality on-Site.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

TABLE OF CONTENTS

Execu	tive Summary	ii
1.0	Introduction	1
1.1	Site Description	1
1.2	Property Ownership	2
1.3	Current and Proposed Future Use	2
1.4	Applicable Site Condition Standards	2
2.0	Background Information	3
2.1	Physical Setting	3
	2.1.1 Water Bodies and Areas of Natural Significance	3
	2.1.2 Topography and Surface Water Draining Features	3
2.2	Past Investigations	
	2.2.1 Previous Report Summary	3
	2.2.2 Use of Previous Analytical Results	6
3.0	Scope of the Investigation	7
3.1	Overview of Site Investigation	
3.2	Media Investigated	8
	3.2.1 Rationale for Inclusion or Exclusion of Media	8
	3.2.2 Overview of Field Investigation of Media	8
4.0	Investigation Method	8
4.1	General	8
4.2	Drilling and Excavating	8
4.3	Soil Sampling	
4.4	Field Screening Measurements	
4.5	Groundwater Monitoring Well Installation	
4.6	Groundwater Field Measurement of Water Quality Parameters	
4.7	Groundwater Sampling	
4.8 4.9	Sediment Sampling	
4.9 4.10	Analytical TestingResidue Management Procedures	
1.10	4.10.1 Soil Cuttings From Drilling and Excavations	
	4.10.2 Water from Well Development and Purging	
	4.10.3 Fluids from Equipment Cleaning	
4.11	Elevation Surveying	
4.12	Quality Assurance and Quality Control Measures	
5.0	Review and Evaluation	15
5.1	Geology	
5.2	Ground Water Elevations and Flow Direction	
	5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals	15
	5.2.2 Results of Interface Probe Measurements	15

	5.2.3 Product Thickness and Free Flowing Product	16
	5.2.4 Groundwater Elevation	16
	5.2.5 Groundwater Flow Direction	16
5.3	Fine-Medium Soil Texture	
	5.3.1 Rational for the Number of Samples Collected and Analyzed	16
5.4	Soil Field Screening	
5.5	Soil Quality	
	5.5.1 Metals and ORPs	17
	5.5.2 Petroleum Hydrocarbons	17
	5.5.3 Volatile Organic Compounds	
	5.5.4 Polycyclic Aromatic Hydrocarbons	18
	5.5.5 Commentary on Soil Quality	
5.6	Ground Water Quality	
	5.6.1 Metals and ORPs	19
	5.6.2 Petroleum Hydrocarbons	19
	5.6.3 Volatile Organic Compounds	19
	5.6.4 Polycyclic Aromatic Hydrocarbons	
5.7	Sediment Quality	
6.0	Conclusions	20
6.1	Qualifications of the Assessors	21
6.2	Signatures	
6.3	Limitations	23
7.0	REFERENCES	24
	LIST OF TABLES	
Table E	-1: Summary of APECs	iii
	-1: Site Property Information	
	-2: Site Ownership	
	-1: Summary of Exceedances Identified in the Previous Report	
	-2: Summary of APECs	
	-1: Rationale of Sampling Media	
	-2: Field Investigation of Media	
	-1: Summary of Drilling Activities	9
T-1.1 4	2. Field Consoring Francisco	
	-2: Field Screening Equipment	10
Table 4	-3: Summary of Sample Bottle Preservatives	10
Table 4 Table 5	-3: Summary of Sample Bottle Preservatives -1: Summary of Grain Size Analyses	10 13 16
Table 4 Table 5 Table 5	-3: Summary of Sample Bottle Preservatives	10 13 16 17

Enclosures

FIGURES

- Figure 1 Site Location Plan
- Figure 2 Phase I Property Site Plan
- Figure 3 Phase I Study Area
- Figure 4 PCA within Phase I Study Area
- Figure 5 Borehole Location Plan with APECs
- Figure 6 Groundwater Elevation Contours and Flow Direction
- Figure 7A Soil Characterization Metals and ORPs
- Figure 7B Soil Characterization PHCs
- Figure 7C Soil Characterization VOCs
- Figure 7D Soil Characterization PAHs
- Figure 8A Groundwater Characterization Metals and ORPs
- Figure 8B Groundwater Characterization PHCs
- Figure 8C Groundwater Characterization VOCs
- Figure 8D Groundwater Characterization PAHs

TABLES

- Table 1 Summary of Monitoring Well Installation and Groundwater Data
- Table 2 Summary of Soil Samples Submitted for Chemical Analysis
- Table 3 Summary of Groundwater Samples Submitted for Chemical Analysis
- Table 4 Summary of APECs Investigated
- Table 5 Summary of Metals and ORPs in Soil
- Table 6 Summary of PHCs in Soil
- Table 7 Summary of VOCs in Soil
- Table 8 Summary of PAHs in Soil
- Table 9 Summary of Metals and ORPs in Groundwater
- Table 10 Summary of PHCs in Groundwater
- Table 11 Summary of VOCs in Groundwater
- Table 12 Summary of PAHs in Groundwater
- Table 13 Summary of Maximum Concentrations in Soil
- Table 14 Summary of Maximum Concentrations in Groundwater

APPENDICES

Appendix A – Plan of Survey

Appendix B – Borehole Logs

Appendix C – Laboratory Certificates of Analysis

1.0 Introduction

DS Consultants Ltd. (DS) was retained by Manorwood Homes Inc. to complete a Phase II Environmental Site Assessment (ESA) of the Property located on the northwest corner of the intersection of Huron Street East and Elgin Street North in the village of Thornbury, Ontario. The parcel has been named "Applewood Thornbury" by the client, and is herein referred to as the "Site". The Site has no municipal address and is bounded by Huron Street East to the north, Elgin Street North to the east, commercial structures and King Street East to the south, and residential properties to the west. It is DS's understanding that this Phase II ESA has been requested for due diligence purposes in association with the proposed acquisition of the Property.

This Phase II ESA was conducted in general accordance with the CSA Standards Association protocols outlined in the document "Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2013)" dated 2000, and reaffirmed in 2013. It should be noted that the CSA methodology is sufficient for due diligence purposes, but cannot be used to support the filing of a Record of Site Condition for the Site.

The objective of this Phase II ESA is to confirm whether contaminants are present, and at what concentration are they present on the Site, as related to the Areas of Potential Environmental Concern (APEC) identified in the Phase I ESA.

1.1 Site Description

The Site is a 1.204 hectare (2.98 acres) parcel of land situated within a mixed residential and commercial neighbourhood in the Town of Thornbury, Ontario. The Site is located approximately 50 m north of the intersection of Elgin Street North and King Street East, and was occupied vacant at the time of this investigation. A Site Location Plan is provided in Figure 1.

For the purposes of this report, Elgin Street North is assumed to be aligned in a north-south orientation and King Street East is assumed to be aligned in an east-west orientation. A Plan of Survey for the Site dated January 1, 2013, and prepared by Patten & Thomsen, O.L.S, an Ontario Land Surveyor, has been provided under Appendix A. Additional details regarding the Site are provided in the table below.

Table 1-1: Site Property Information

Criteria	Information	Source
Legal Description	King Street East Thornbury Town Plan PT Lotd 16 to 18 NE King St RP	E-mail Questionnaire

	16R9726 Part 9 Elgin Street North Thornbury Town Plot PT Lots 15 to 19 PT Mcauly St RP 16R8184 Parts 2 and 4	
Municipal Address	Applewood Thornbury, Huron Street, Thornbury, Ontario	Client
Current Site Occupants	Vacant	Client
Site Area	1.204 hectares (2.98 acres)	Google Earth

1.2 Property Ownership

The ownership details for the Site are provided in the table below.

Table 1-2: Site Ownership

Property Owner	Address	Contact
Dante Carinci, Nick Sgro (1136965 Ontario Ltd.)	1136965 Ontario Ltd. 7-60 Saramia Crescent Vaughan, Ontario L4K 4J7	1136965 Ontario Ltd. 7-60 Saramia Crescent Vaughan, Ontario L4K 4J7

1.3 Current and Proposed Future Use

The Site is currently unoccupied and was historically used for industrial purposes as part of a railway line. It is DS's understanding that the Client intends to redevelop the Site for residential purposes.

1.4 Applicable Site Condition Standards

The applicable Site Condition Standards (SCS) for the Site are considered by the Qualified Person (QP) to be the Table 2 SCS: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Use with coarse-textured soils as contained in the April 15, 2011 Ontario Ministry of Environment and Climate Change (MOECC) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", herein referred to as the "Table 2 SCS".

The selection of the Table 2 SCS is considered appropriate based on the following rationale:

- The Town of Thornbury obtains its potable water from Georgian Bay, however parts of Thornbury may rely on groundwater as a potable water source;
- The Site is not considered to be environmentally sensitive, as defined under O.Reg. 153/04 (as amended);
- The proposed future use of the Site will be residential;
- The Site is not located within 30 m of a water body;

- ◆ The pH of the soils analyzed during this Phase II ESA are within the accepted range specified under 0.Reg. 153/04 (as amended); and
- Bedrock was not encountered within 2 metres of the ground surface

2.0 Background Information

2.1 Physical Setting

2.1.1 Water Bodies and Areas of Natural Significance

Georgian Bay is the closest body of water to the Site, located approximately 170 m north of the Site.

A review of the Ministry of Natural Resources and Forestry (MNRF) online interactive map of natural heritage areas did not identify areas of natural and scientific interest on the Phase I Property or within the Phase I Study Area. The Grey County Natural Heritage Systems Study (dated 2017) categorized the region associated with the Phase I Property and Study Area as the Grey County Settlement Area. A 'Woodland (County)' area is depicted west adjacent to the Site, within the Phase I Study Area, however it was not considered a natural heritage area or an area of natural or scientific interest.

2.1.2 Topography and Surface Water Draining Features

The Site is located in an urban setting, at an elevation of 185 metres above sea level (masl). The topography of the Site is generally flat. The neighbouring property are at similar elevations, and the topography in the vicinity of the Site generally slopes to the north, towards Georgian Bay. Surface water flow associated with precipitation events is anticipated to run overland and drain into the municipal storm sewer catch basins.

2.2 Past Investigations

2.2.1 Previous Report Summary

The following reports were available for DS for review:

- "Phase 2 Assessment PIN 44438, Parcels A, B, and C, Thornbury, Ontario" dated May
 4, 1995, was prepared by XCG Environmental Services Inc. for CN Real Estate
- "Phase I Environmental Site Assessment" dated October, 2020, prepared by DS Consultants Ltd. for Manorwood Homes Inc.

Phase 2 Assessment - PIN 44438, Parcels A, B and C, Thornbury, Ontario

The Phase 2 Assessment was conducted in general accordance with the Proposed MOEE Guidelines for the Clean-up of Contaminated Sites in Ontario, and included a site description,

summary of previous investigations, the geology and hydrogeology of the Site, and analytical results and analysis. The land included in this investigation was divided into Parcels A, B and C. Parcels A and B correspond to the area within the Phase II Property boundary, while Parcel C is southwest adjacent. The review of the previous Phase I investigation and study area research allowed for the following potentially contaminating activities to be identified:

- The presence of a gasoline service station (Co-op) located southwest of the Site (off-Site).
- Historical usage of the parcel of land as railway lines and loading docks (on-site).
- The presence of a site identified in the MOEE Inventory of Coal Gasification Plant Waste Sites, Standard Chemical Co Ltd, approximately 150 m north of the Site (off-Site).
- Three (3) waste piles were identified on the Property (on-site).

Soil and groundwater samples were submitted for chemical analysis and compared to Table B concentrations of the Proposed MOEE Guidelines at the time of the investigation. For the purposes of the current investigation the results were also compared to the current applicable site condition standards for the Phase II Property (Table 2 RPI). A summary of the exceedances is provided in the table below:

Table 2-1: Summary of Exceedances Identified in the Previous Report

Sample ID	Parameter	MOEE Guidelines (1995)	Table 2 RPI SCS (ug/g)	Result (ug/g)
		PARCEL A		
TP8	Beryllium	2.5	4	3.1
-		PARCEL B	40	56r
	Fluoranthene	40	0.69	0.99
	Benzo(a)anthracene	170	0.5	0.52
TP1	Benzo(a)pyrene	1.9	0.3	0.65
	Indeno(1,2,3-cd)pyrene	19	0.38	0.66
	Dibenzo(a,h)anthracene	1.9	0.1	0.19
TP5	Beryllium	2.5	4	2.8
	Fluoranthene	40	0.69	1.8
	Benzo(a)anthracene	170	0.5	0.6
TDC	Benzo(b)fluoranthene	19	0.78	1.4
TP6	Benzo(a)pyrene	1.9	0.3	1.1
	Indeno(1,2,3-cd)pyrene	1.9	0.38	1.2
	Dibenzo(a,h)anthracene	1.9	0.1	0.23
9.	PARCEL C (no	t part of the Phase I Pi	operty)	
TP12	Beryllium	2.5	4	2.7

Notes: 0.0 = exceeds MOEE Guidelines, meets T2 RPI SCS 0.0 = meets MOEE Guidelines, exceeds T2 RPI SCS

The results indicated that two (2) samples located on Parcel B exceeded Table 2 RPI SCS for several PAH parameters. The groundwater results indicated that the samples submitted for

analysis exceeded the previous MOEE Guidelines for chloride and sodium, however they met current Table 2 RPI SCS. These exceedances were not considered environmentally significant in the previous investigation because the shallow groundwater was not identified as a drinking water source.

DS identified five (5) PCAs associated with the historic property uses and soil chemical analyses conducted during the investigation.

Phase I Environmental Site Assessment

The Phase I ESA conducted by DS in October 2020, was conducted for due diligence purposes in association with the proposed acquisition of the Site. It is anticipated that the Site will be developed for residential purposes.

The County Atlas dated 1877 was consulted to determine the first developed land use of the Site. The Property was identified as being vacant with the exception of a railway track along the southern border of the Property, oriented east-west, until the late 1900s, when the tracks appeared non-operational. The Property appears to have been vacant since the railway tracks were removed.

The investigation identified a total of thirteen (13) PCAs on the Phase I Property and within the Phase I Study Area. Ten (10) of the thirteen (13) PCAs were considered to contribute to six (6) APECs on the Phase II Property. The PCAs contributing to APECs have been summarized in the following table:

Table 2-2: Summary of APECs

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase I Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
APEC-1	West side of the Property	PCA-1, 2: #28 – Gasoline and associated products storage in fixed tanks PCA-6: N/S – Fuel Leak PCA-7: #22 – Fertilizer Manufacturing, Processing and Bulk Storage	Off-Site	Metals, PHCs, BTEX	Groundwater
APEC-2	Centre south portion of the Property	PCA-3: #58 – Waste Disposal and Waste Management, including thermal treatment, landfilling and transfer of	Off-Site	PHCs, VOCs, Metals	Groundwater

Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern on Phase I Property	Potentially Contaminating Activity	Location of PCA (on- site or off- site)	Contaminants of Potential Concern	Media Potentially Impacted (Ground water, soil and/or sediment)
		waste, other than use of biosoils as soil conditioners			
APEC-3	East side of the Property	PCA-4, 5: #33 – Metal Treatment, Coating, Plating, and Finishing	Off-Site	Metals, As, Sb, Se, PHCs, VOCs, PAHs	Groundwater
APEC-4	Southern portion of the Property	PCA-10: #46 – Rail Yards, Tracks and Spurs	Off-Site	Metals, PHCs, BTEX, PAHs	Soil
APEC-5	Entire Property	PCA-11: #30 – Importation of Fill Material of Unknown Quality	On-Site	Metals, As, Sb, Se, B-HWS, CN, EC, Cr (VI), Hg, low or high pH, SAR, PHCs, VOCs, PAHs	Soil
APEC-6	Vicinity of previous test pits	PCA-13: N/S-Known soil contamination	On-Site	PAHs	Soil

The PCAs and APECs identified in the Phase I ESA were used to determine the relevant contaminants of concern, Metals, As, Sb, Se, B-HWS, CN, EC, Cr (VI), Hg, low or high pH, SAR, PHCs, VOCs, PAHs, BTEX, and conduct the Phase II ESA.

2.2.2 Use of Previous Analytical Results

DS has reviewed the reports provided for the purpose of identifying Areas of Potential Environmental Concern on the Site. The analytical data referenced in the previous reports was not relied upon as DS cannot verify the methodology used to obtain the analytical data, with respect to whether the methodology used conforms to the present day requirements. As such the previous analytical results have not be relied upon for the purposes of this report.

3.0 Scope of the Investigation

The scope of the Phase II ESA was designed to investigate the portions of the Site determined in the Phase I ESA to be Areas of Potential Environmental Concern. This Phase II ESA was conducted in general accordance with the CSA Standards Association protocols outlined in the document "Phase II Environmental Site Assessment, CSA Standard Z769-00 (R2013)" dated 2000, and reaffirmed in 2013 The scope of the investigation including the subsurface investigation, sampling, and laboratory analysis was based on the findings of the Phase I ESA and was limited to the portions of the site which were accessible.

3.1 Overview of Site Investigation

The following tasks were completed as part of the Phase II ESA:

- Clearance of public private underground utility services prior to commencement of subsurface investigative operations;
- Retained a MECP licenced driller between October 1 and 2, 2020, to advance a total of three (3) boreholes on the Site, to depths ranging between 6.7 to 7.5 mbgs. All three (3) of the boreholes were instrumented with groundwater monitoring wells upon completion. The soil lithology was logged during drilling, and representative soil samples were collected at regular intervals. The soil samples were screened for organic vapours using an Eagle 2 Multigas Detector and examined for visual and olfactory indications of soil impacts;
- DS personnel conducted a second sampling event on October 29, 2020, to advance an additional nine (9) test pits across the Site. The test pits were advanced using a hydraulic backhoe to a maximum depth of 2.5 mbgs.
- Submitted "worst case" soil samples collected from the boreholes for laboratory analysis of relevant contaminants of potential environmental concern (COPCs) as identified in the Phase I ESA;
- Conducted groundwater level measurements in the monitoring wells in order to determine the groundwater elevation, and to establish the local groundwater flow direction;
- Surveyed all monitoring wells to a geodetic benchmark;
- Developed and purged all monitoring wells prior to sampling. Groundwater samples were collected for all COPCs identified in the Phase I ESA;
- Compared all soil and groundwater analytical data to the applicable MOECC SCS; and
- Prepared a Phase II ESA Report.

3.2 Media Investigated

3.2.1 Rationale for Inclusion or Exclusion of Media

Table 3-1: Rationale of Sampling Media

Media	Included or Excluded	Rationale
Soil	Included	Soil was identified as a media of potential impact in the Phase I ESA, based on the historical operations conducted on-Site.
Groundwater	Included	Groundwater was identified as a media of potential impact in the Phase I ESA, based on the historical operations conducted on-Site.
Sediment	Excluded	Sediment is not present on the Site.
Surface Water	Excluded	Surface water is not present on the Site.

3.2.2 Overview of Field Investigation of Media

Table 3-2: Field Investigation of Media

Media	Methodology of Investigation
Soil	A total of three (3) boreholes and nine (9) test pits were advanced on the Site, to a maximum depth of 7.5 mbgs. Seventeen (17) soil samples were collected and submitted for analysis of all relevant COPCs.
Groundwater	A total of three (3) monitoring wells were present on the Site at the time of the investigation. Representative groundwater samples were collected from each monitoring well and submitted for analysis of all relevant COPCs.

4.0 Investigation Method

4.1 General

The Phase II ESA followed the methodology outlined in the following documents:

- Ontario Ministry of the Environment "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario" (December 1996);
- Ontario Ministry of the Environment "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (July 2011) (Analytical Protocol);

The methods used in the Phase II ESA investigation did not differ from the associated standard operating procedures.

4.2 Drilling and Excavating

A site visit was conducted prior to drilling in order to identify the borehole locations based on the APECs identified in the Phase I ESA. The selected borehole and test pit locations are presented on Figure 5. The borehole locations were cleared of underground public and

private utility services prior to commencement of drilling. A summary of the drilling and test pit advancement activities is provided in the table below.

Table 4-1: Summary of Drilling Activities

Parameter	Details		
Drilling Investigation			
Drilling Contractor	Walker Drilling Ltd.		
Drilling Dates	October 1, 2020		
Drilling Equipment Used	Track-mounted CME 55		
Measures taken to minimize the potential for cross contamination	Soil sampling was conducted using a 50 mm stainless steel split spoon sampler was used to collect soil samples from the boreholes. The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination;		
Sample collection frequency	Samples were collected at a frequency of every 0.6 m per 0.8 m from the ground surface to 7.5 mbgs in BH20-1. In BH20-2 and BH20-3 the samples were collected every 0.6 m per 0.8 m until 3.1 mbgs, followed by one sample per 1.5 m to borehole termination depth.		
	Test Pit Investigation		
Date of Investigation	October 29, 2020		
Equipment Used	Hydraulic Backhoe		
Measures taken to minimize the potential for cross contamination	Each sample was collected from the test pits using dedicated nitrile gloves.		
Sample collection frequency	Soil samples were collected between 0 and 1.2 mbgs.		

4.3 Soil Sampling

The samples gathered from boreholes BH20-1, BH20-2 and BH20-3 were collected using a 50 mm stainless steel split spoon sampler. Discrete soil samples were collected from the split-spoon samplers by DS personnel using dedicated acrylonitrile gloves. Samples taken from test pits TP1 through TP8 were collected by DS personnel using dedicated nitrile gloves.

A portion of each sample was placed in a resealable plastic bag for field screening, and the remaining portion was placed into laboratory supplied glass sampling jars. Samples intended for VOC and the F1 fraction of petroleum hydrocarbons analysis were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. All sample jars were stored in dedicated coolers with ice for storage, pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

The subsurface soil conditions were logged by DS personnel at the time of drilling and recorded on field borehole logs. The borehole logs are presented under Appendix B. Additional detail regarding the lithology encountered in the boreholes is presented under Section 6.1.

4.4 Field Screening Measurements

All retrieved soil samples were screened in the field for visual and olfactory observations. No obvious visual or olfactory evidence of potential contamination were noted. No aesthetic impacts (e.g. cinders, slag, hydrocarbon odours) were encountered during this investigation. The soil sample headspace vapour concentrations for all soil samples recovered during the investigation were screened using portable organic vapour testing equipment in accordance with the procedure outlined in the MECP's 'Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario'.

The soil samples were inspected and examined to assess soil type, ground water conditions, and possible chemical contamination by visual and olfactory observations or by organic vapour screening. Samples submitted for chemical analysis were collected from locations judged by the assessor to be most likely to exhibit the highest concentrations of contaminants based on several factors including (i) visual or olfactory observations, (ii) sample location, depth, and soil type (iii) ground water conditions and headspace reading. A summary of the equipment used for field screening is provided below:

Table 4-2: Field Screening Equipment

Parameter	Details
Make and Model of Field Screening Instrument	Eagle 2, Model 5101-P2
Chemicals the equipment can detect and associated detection limits	VOCs with dynamic range of 0 parts per million (ppm) to 2,000 ppm PHCs with range of 0 to 50, 000 ppm
Precision of the measurements	3 significant figures
Accuracy of the measurements	VOCs: ± 10% display reading + one digit Hydrocarbons: ± 5% display reading + one digit
Calibration reference standards	PID: Isobutylene CGD: Hexane
Procedures for checking calibration of equipment	In-field re-calibration of the CGI was conducted (using the gas standard in accordance with the operator's manual instructions) if the calibration check indicated that he calibration had drifted by more than +/- 10%.

A summary of the soil headspace measurements are provided in the borehole logs, appended under Appendix B.

4.5 Groundwater Monitoring Well Installation

Monitoring wells were installed upon completion of all three (3) boreholes advanced on the Site. The monitoring wells were constructed of 51-millimetre (2-inch) inner diameter (ID) flush-threaded schedule 40 polyvinyl chloride (PVC) risers, equipped with a 3.05 m length of No. 10 slot PVC screen. The well screens were sealed at the bottom using a threaded cap and at the top with a lockable J-plug.

Silica sand was placed around and up to 0.6m above the well screen to act as a filter pack. Bentonite was placed from the ground surface to the top of the sand pack. The wells were completed with protective aboveground monument casings. Details regarding the monitoring well construction can be found in Table 1, and on the borehole logs provided in Appendix B.

Disposable nitrile gloves were used to minimize the potential for cross-contamination during well installation. Dedicated equipment was used for well development and sampling for further minimize the risk of cross contamination.

The monitoring wells were developed on October 6, 2020 in accordance with DS SOPs for monitoring well development, the wells were developed by removing a minimum of three standing water column volumes using dedicated inertial pumps comprised of Waterra polyethylene tubing and dedicated foot valves.

4.6 Groundwater Field Measurement of Water Quality Parameters

Groundwater field measurements of water quality parameters were not taken while groundwater sampling during this investigation. The monitoring wells were purged dry and allowed to recover prior to sampling to ensure that fresh formation groundwater was obtained for sampling purposes.

4.7 Groundwater Sampling

Groundwater samples were collected a minimum of 24 hours after the development of the monitoring wells. The monitoring wells were purged and were allowed to recover prior to sampling. The wells were sampled using low flow methodology, and samples were collected using a peristaltic pump with dedicated 6.4 mm ID polyethylene tubing.

Groundwater samples for metals analysis were field filtered using dedicated 0.45 micro inline filters. The groundwater was transferred directly into laboratory supplied containers, and preserved as appropriate using the containers supplied by the analytical laboratory. The samples were placed in coolers upon completion of sampling and stored on ice for storage,

pending transport to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

4.8 Sediment Sampling

No sediment as defined under O.Reg. 153/04 (as amended) was present on the Site at the time of this investigation. Sediment sampling was not conducted as a result.

4.9 Analytical Testing

The soil and groundwater samples collected were submitted to SGS Canada under chain of custody protocols. SGS is an independent laboratory accredited by the Canadian Association for Laboratory Accreditation. SGS conducted the analyses in accordance with the MECP document "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" dated March 9, 2004 (revised on July 1, 2011).

4.10 Residue Management Procedures

4.10.1 Soil Cuttings From Drilling and Excavations

The soil cuttings generated by the borehole drilling program were stored in 205 L drums, and left on-site for disposal by a MECP approved waste-hauler for disposal at a MECP approved waste management facility.

4.10.2 Water from Well Development and Purging

Excess water derived from well purging activities was stored in 20-L sealed plastic pails, and temporarily stored on site. Upon receipt of the analytical results it was determined that the purged groundwater meets the applicable Table 2 RPI SCS. Based on this the purged groundwater was allowed to re-infiltrate adjacent to the monitoring wells.

4.10.3 Fluids from Equipment Cleaning

Excess equipment cleaning fluids were stored in 20-L sealed plastic pails and temporarily stored on site for disposal by a MECP approved waste-hauler for disposal at a MECP approved waste management facility.

4.11 Elevation Surveying

The geodetic benchmark identified within the vicinity of the Property is station #00819720779, at approximately 185 masl.

The ground surface elevations can be found on the borehole logs presented in Appendix B.

4.12 Quality Assurance and Quality Control Measures

All soil and groundwater samples were stored in laboratory-supplied sample containers in accordance with the MOECC Analytical Protocol. A summary of the preservatives supplied by the laboratory is provided in the table below.

Table 4-3: Summary of Sample Bottle Preservatives

Media	Parameter	Sample Container
	PHCs F1 VOCs	40 mL methanol preserved glass vial with septum lid.
Soil	PHCs F2-F4 metals and ORPs PAHs	120 mL or 250 mL unpreserved glass jar with Teflon [™] -lined lid.
	PHCs F1 VOCs	40 mL glass vial with septum lid, containing sodium bisulphate preservative.
	PHCs F2-F4	250 mL amber glass bottle with sodium bisulphate preservative
	PAHs	250 mL amber glass bottle (unpreserved)
Groundwater	Inorganics	500 mL high density polyethylene bottle (unpreserved)
	Metals	125 mL high density polyethylene bottle containing nitric acid preservative
	Hexavalent Chromium	125 mL high density polyethylene bottle containing ammonium sulphate/ammonium hydroxide preservative
	Mercury	125 mL glass bottle containing hydrochloric acid preservative
	Cyanide	125 mL high density polyethylene bottle containing sodium hydroxide preservative

Groundwater samples were collected using dedicated equipment for each well. Groundwater samples collected for analysis of dissolved metals, mercury and hexavalent chromium were filtered in the field using a dedicated 0.45-micron in-line filter. Each sample container was labelled with a unique sample identification, the project number, and the sampling date. All samples were placed in an ice-filled cooler upon completion of sampling, and kept under refrigerated conditions until the time of delivery to the analytical laboratory. A formal chain of custody was maintained for all samples submitted to the laboratory.

Dedicated, disposable nitrile gloves were used for each sampling event to reduce the potential for cross-contamination.

The split spoon sampler was brushed clean of soil, washed in municipal water containing phosphate free detergent, rinsed in municipal water, and then rinsed with distilled water for each sampling interval in order to reduce the potential for cross contamination Dedicated equipment was used for well development and sampling for further minimize the

risk of cross contamination. Non-dedicated equipment (i.e. interface probe) was cleaned before initial use and between all measurement points with a solution of $Alconox^{TM}$ and distilled water. The $Alconox^{TM}$ solution was rinsed off using distilled water.

All field screening devices (i.e. PID, CGD, HI98129) were calibrated prior to use by the supplier. Calibration checks were completed, and re-calibrations were conducted as required.

5.0 Review and Evaluation

5.1 Geology

A summary of the subsurface conditions is presented below. Additional details may be found in the borehole logs appended in Appendix B.

A layer of topsoil approximately 50 to 300 mm in thickness was encountered at the surface of all boreholes and test pits advanced, with the exception of test pits TP3-2 and TP5, where topsoil was observed below a surficial layer of fill. The fill material encountered at TP3-2 and TP5 extended from the surface to approximately 1.5 mbgs, and contained clayey silt, trace sand, trace gravel and debris such as pieces of asphalt. A layer of possible alluvial deposits consisting of sand and gravel with cobbles and boulders was found below the topsoil and varied in thickness across the Site. Underlying the possible alluvial deposit layer was a clayey silt unit that extended to the maximum explored depth of 7.5 mbgs in BH20-1 and to a depth of approximately 4.9 and 2.3 mbgs in boreholes BH20-2 and BH20-3 respectively. Beneath the clayey silt unit in BH20-2 and BH20-3 a silty sand/sandy silt/sand layer containing rock fragments, was encountered and extended to the explored depth of the boreholes. Bedrock was not visually observed at any of the borehole locations, however auger refusal occurred in borehole BH20-3 at 6.7 mbgs, possibly indicating that bedrock was encountered at this depth.

5.2 Ground Water Elevations and Flow Direction

5.2.1 Rationale for Monitoring Well Location and Well Screen Intervals

A total of three (3) monitoring wells were installed on the Site in order to assess the groundwater quality in relation to APECs 1, 2 and 3. The COPCs associated with these APECs were Metals, As, Sb, Se, PHCs, BTEX, VOCs, and PAHs. The monitoring wells were screened to intersect the first water bearing formation encountered, in order to allow for the assessment of LNAPL, and to provide information regarding the quality of the groundwater at the water table. The monitoring wells were screened between 2.5 and 5.5 mbgs, in varying materials including fill, silty sand and silty clay, and sandy silt. The groundwater encountered is inferred to be situated in an unconfined aquifer.

5.2.2 Results of Interface Probe Measurements

A summary of the groundwater level measurements is provided in Table 1. The groundwater level measurements were collected using a Solinst interface probe. The depth to groundwater was found to range between 2.30 and 4.30 mbgs on October 6, 2020. There was no indication of DNAPL or LNAPL in the monitoring wells at this time.

5.2.3 Product Thickness and Free Flowing Product

No evidence of product was observed in the monitoring wells at the time of the investigation.

5.2.4 Groundwater Elevation

The groundwater elevation was calculated by subtracting the depth to groundwater from the surface elevation determined by the surface elevation survey conducted as part of this investigation. A summary of the groundwater elevations calculated is presented in Table 1. Generally, the groundwater elevation was found to range from 181.90 to 183.60 masl in the upper aquifer investigated.

5.2.5 Groundwater Flow Direction

The groundwater flow direction was interpreted based on the topography of the site and surrounding properties, and the location of the closest body of water, Georgian Bay, which is approximately 170 m north of the Phase Two Property. The inferred groundwater flow direction is north, towards Georgian Bay. The groundwater elevations and flow direction are presented on Figure 6.

5.3 Fine-Medium Soil Texture

The results of the grain size analysis determined that less than two-thirds of the soils encountered on the Site were identified to be medium-fine textured. The results are summarized in the table below:

Table 5-1: Summary of Grain Size Analyses

Sample	%Cobble	% Gravel	% Sand	% Silt	% Clay	Classification
BH20-1 SS4	576	40	53	22	7	Coarse Textured
TP2	26.5	46	26	57	1	Coarse Textured
BH20-2 SS5	8,785	0	8	75	17	Medium-Fine Textured
BH20-3 SS3	S 2 82	8	8	64	20	Medium-Fine Textured

For the purposes of evaluating the SCS, all soils on the Site are considered coarse textured.

5.3.1 Rational for the Number of Samples Collected and Analyzed

The grain size analyses were conducted for the purposes of this Phase II ESA, in addition to a geotechnical investigation which was conducted concurrently. At least one sample was analyzed per stratigraphic unit encountered in order to characterize the various strata encountered.

5.4 Soil Field Screening

Soil vapour headspace readings were collected at the time of sample collection, the results of which are presented on the borehole logs (Appendix B). The soil vapour headspace readings were collected using a calibrated RKI Eagle 2 operated in methane elimination mode. The PID readings were non detect (0 ppm) for all samples measured. The CGD readings ranged between 0 and 35 ppm.

The soil samples were also screened for visual and olfactory indicators of impacts (e.g. staining, odours). No staining, odours or other aesthetic impacts were noted during sampling.

5.5 Soil Quality

The results of the chemical analyses conducted are presented in Tables 5 through 8. A visual summary of the location of the sample locations is provided in Figures 7A through 7D. The laboratory certificates of analysis have been provided under Appendix C.

5.5.1 Metals and ORPs

A total of eight (8) samples, including one (1) field duplicate for QA/QC purposes were submitted for analysis of metals and ORPs. The results of the analyses are tabulated in Table 5, and presented on Figure 7A. The results of the analyses indicated the following exceedances of the Table 2 RPI SCS:

Table 5-2: Summary of Metals and ORPs Exceedances in Soil

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 2 RPI SCS	Reported Value
TDC	0-0.3	Lead	μg/g	120	170
TP6		Mercury	μg/g	0.27	0.35
TDC D 2	0-0.3	Lead	μg/g	120	160
TP6 Dup2		Mercury	μg/g	0.27	0.36
TP7	0-0.3	Lead	μg/g	120	170

5.5.2 Petroleum Hydrocarbons

A total of eight (8) samples were submitted for analysis of PHCs (incl. BTEX). The results of the analyses are tabulated in Table 6, and presented on Figure 7B. The results of the analyses indicated that the samples submitted met Table 2 RPI SCS for PHCs.

5.5.3 Volatile Organic Compounds

A total of three (3) samples were submitted for analysis of VOCs. The results of the analyses are tabulated in Table 7, and presented on Figure 7C. The results of the analyses indicated that the samples submitted met Table 2 RPI SCS for VOCs.

5.5.4 Polycyclic Aromatic Hydrocarbons

A total of thirteen (13) samples were submitted for analysis of VOCs. The results of the analyses are tabulated in Table 8, and presented on Figure 7D. The results of the analyses indicated the following exceedances of the Table 2 RPI SCS:

Table 5-3: Summary of PAH Exceedances in Soil

Sample ID	Sample Depth (mbgs)	Parameter	Units	Table 2 RPI SCS	Reported Value
TP3-2	1.0-1.2	Fluoranthene	μg/g	0.69	0.73
		Methylnaphthalene, 2-(1-)	μg/g	0.99	4.51
		Benzo(a)anthracene	μg/g	0.5	0.8
		Benzo(a)pyrene	μg/g	0.3	0.94
TDC	0.02	Benzo(b+j)fluoranthene	μg/g	0.78	1.49
TP6	0-0.3	Dibenz(a,h)anthracene	μg/g	0.1	0.12
		Fluoranthene	μg/g	0.69	1.57
		Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.43
		Naphthalene	μg/g	0.6	1.64
	0-0.3	Benzo(a)anthracene	μg/g	0.5	1.19
		Benzo(a)pyrene	μg/g	0.3	1.15
TP7		Benzo(b+j)fluoranthene	μg/g	0.78	1.75
117		Dibenz(a.h)anthracene	μg/g	0.1	0.12
		Fluoranthene	μg/g	0.69	2.52
		Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.42
	0-0.3	Benzo(a)anthracene	μg/g	0.5	1.86
		Benzo(a)pyrene	μg/g	0.3	1.73
		Benzo(b+j)fluoranthene	μg/g	0.78	2.27
TP8		Benzo(k)fluoranthene		0.78	0.98
		Dibenz(a,h)anthracene	μg/g	0.1	0.19
		Fluoranthene	μg/g	0.69	3.42
		Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.67

5.5.5 Commentary on Soil Quality

Soil impacted with metals was identified in test pits TP6 and TP7 at depths of 0-0.3 mbgs. The vertical extent of the metals impact in soil is currently unknown. The metals impacts appear to be localized in nature. A visual illustration of the distribution of metals impacts in soil is provided in Figure 7A.

PAH impacts in soil were identified in six (6) discrete sampling locations, indicating a wider distribution of impacts across the Site. The PAH impacts were identified at depths ranging between 0 to 1.2 mbgs. The vertical extent of the PAH impacts in soil is currently unknown. A visual illustration of the distribution of PAH impacts in soil is provided in Figure 7D.

Additional investigation is required to determine the vertical extent of the soil impacts on-Site.

5.6 Ground Water Quality

The results of the chemical analyses conducted are presented in Tables 9 through 12. A visual summary of the location of the sample locations is provided in Figures 8A through 8D. The laboratory certificates of analysis have been provided under Appendix C.

5.6.1 Metals and ORPs

A total of three (3) samples were submitted for analysis of metals and ORPs. The results of the analyses are tabulated in Table 9, and presented on Figure 8A. The groundwater samples transferred into the metals, mercury, and hexavalent chromium bottles were field filtered using a 0.45-micron in-line filter. The results of the analyses indicated the groundwater samples submitted met Table 2 RPI standards for metals and ORPs.

5.6.2 Petroleum Hydrocarbons

A total of three (3) samples were submitted for analysis of PHCs (incl. BTEX). The results of the analyses are tabulated in Table 10, and presented on Figure 8B. The results of the analyses indicated that the groundwater samples submitted met Table 2 RPI standards for PHC (incl. BTEX).

5.6.3 Volatile Organic Compounds

A total of three (3) samples were submitted for analysis of VOCs. The results of the analyses are tabulated in Table 11 and presented on Figure 8C. The results of the analyses indicated that the samples submitted met Table 2 RPI standards for VOCs.

5.6.4 Polycyclic Aromatic Hydrocarbons

A total of three (3) samples were submitted for analysis of PAHs. The results of the analyses are tabulated in Table 12, and presented on Figure 8D. The results of the analyses indicated that the samples submitted met Table 2 RPI standards for PAHs.

5.7 Sediment Quality

Sediment was not identified as a medium of concern during this investigation.

6.0 Conclusions

This Phase II ESA involved that advancement of three (3) boreholes, three (3) monitoring wells, nine (9) test pits and the collection of soil and groundwater samples for analysis of the potential contaminants of concern, including: Metals, As, Sb, Se, B-HWS, CN, EC, Cr (VI), Hg, low or high pH, SAR, PHCs, VOCs, PAHs, BTEX.

Based on the results of the information gathered through the course of the investigation, DS presents the following conclusions:

- Soil impacts were identified on-Site at depths ranging between 0-0.3 mbgs. Additional vertical delineation is recommended to understand the depth of the soil impacts. The impacted soils may require off-site disposal in the future at the time of Site development. Disposal premiums may be incurred for the disposal of impacted soils.
- Given the historic industrial use as a railway line, future residential development will trigger the requirement for the filing of a Record of Site Condition with the Ministry of Environment, Conservation and Parks. Additional Environmental Site Assessment in accordance with O.Reg. 153/04 (as amended), followed by soil remediation or completion of a risk assessment will be required in the future to support the filing of a Record of Site Condition.
- The results of the groundwater sampling completed to date has indicated that the soil impacts identified do not appear to have adversely affected the groundwater quality on-Site.
- All monitoring wells should be decommissioned in accordance with O.Reg. 903 when no longer required.

6.1 Qualifications of the Assessors

Patrick (Rick) Fioravanti, B.Sc., P.Geo., QPESA

Mr. Fioravanti the Manager of Environmental Services with DS Consultants Limited. Rick holds a Honours Bachelor of Science with distinction in Toxicology from the University of Guelph, and is a practicing member of the Association of Professional Geoscientists of Ontario (APGO). Patrick has over eight years of environmental consulting experience and has conducted and/or managed over 100 projects in his professional experience. Patrick has extensive experience conducting Phase One and Phase Two Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation projects, supported many risk assessments, and successfully filed Records of Site Condition with the Ministry of Environment and Climate Change. Patrick is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended).

Mr. Drew Doak, B.Sc.E., P.Eng., QPESA

Mr. Doak is an Environmental Project Manager with DS Consultants Limited. Drew holds a Bachelor of Science in Engineering from Queen's University and is a practicing member of the Professional Engineers of Ontario (PEO). Drew has five years of environmental consulting experience and has conducted and/or managed a multitude of projects in his professional experience. Drew has extensive experience conducting Phase One and Phase II Environmental Site Assessments in support of brownfields redevelopment in urban settings, and been involved in numerous remediation projects, and supported many risk assessments and Records of Site Conditions with the Ministry of Environment, Conservation and Parks. He has also conducted a variety of Hydrogeological investigations within the GTA. Drew is considered a Qualified Person to conduct Environmental Site Assessments as defined by Ontario Regulation 153/04 (as amended).

Genevieve Klein, B.Sc.

Ms. Klein is an environmental technician with DS Consultants Ltd. Genevieve holds a Bachelor of Science in Environmental Science Degree from the University of Guelph, has been working in the environmental sector since 2017 and has experience conducting Phase One and Phase Two Environmental Site Assessments.

6.2 Signatures

This Phase II ESA was conducted under the supervision of Drew Doak, P.Eng., QP_{ESA} in accordance with the requirements CSA Standard Z769-00 (R2013). The findings and conclusions presented have been determined based on the information obtained at the time of the investigation, and on an assessment of the conditions of the Site at this time.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

Yours truly,

DS Consultants Ltd

Prepared by:

Genevieve Klein, BSc. Environmental Technician

Drew Doak, B.Sc.E., P.Eng., QP_{ESA} Environmental Project Manager

Rick Fioravanti, B.Sc., P.Geo., QP_{ESA} Manager – Environmental Services

6.3 Limitations

This report was prepared for the sole use of Manorwood Homes Inc. and is intended to provide an assessment of the environmental condition on the property located at [Abstract], Applewood Thornbury. The information presented in this report is based on information collected during the completion of the Phase II Environmental Site Assessment by DS Consultants Ltd. The material in this report reflects DS' judgment in light of the information available at the time of report preparation. This report may not be relied upon by any other person or entity without the written authorization of DS Consultants Ltd. The scope of services performed in the execution of this investigation may not be appropriate to satisfy the needs of other users, and any use or reuse of this documents or findings, conclusions and recommendations represented herein, is at the sole risk of said users.


The conclusions drawn from the Phase II ESA were based on information at selected observation and sampling locations. Conditions between and beyond these locations may become apparent during future investigations or on-site work, which could not be detected or anticipated at the time of this investigation. The sampling locations were chosen based upon a cursory historical search, visual observations and limited information provided by persons knowledgeable about past and current activities on this site during the Phase II ESA activities. As such, DS Consultants Ltd. cannot be held responsible for environmental conditions at the site that was not apparent from the available information.

7.0 REFERENCES

- Armstrong, D.K. and Dodge, J.E.P. *Paleozoic Geology Map of Southern Ontario*. Ontario Geological Survey, Miscellaneous Release--Data 219.
- Chapman, L.J. and Putnam, D.F. 2007. The Physiography of Southern Ontario. Ontario Geological Survey, Miscellaneous Release--Data 228.
- Freeze, R. Allen and Cherry, John A., 1979. Ground water. Page 29.
- Ontario Ministry of the Environment, December 1996. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario.
- Ontario Ministry of Environment, 15 April 2011. Soil, Ground Water and Sediment Standards for use under part XV.10f the Environmental Protection Act.
- Ontario Ministry of the Environment, June 2011. Guide for Completing Phase Two Environmental Site Assessments under Ontario regulation 153/04.
- Ontario Ministry of the Environment, July 2011. Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act.
- The Ontario Geological Survey. 2003. Surficial Geology of Southern Ontario. "Phase 2 Assessment PIN 44438, Parcels A, B, and C, Thornbury, Ontario" dated May 4, 1995, was prepared by XCG Environmental Services Inc. for CN Real Estate.

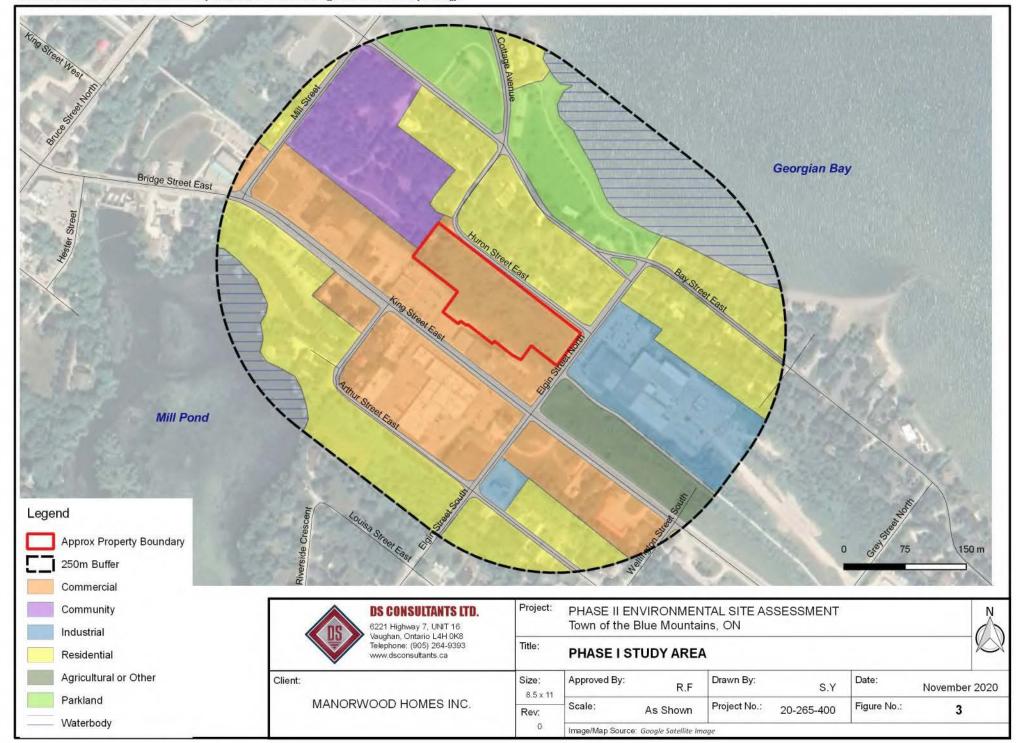
Figures

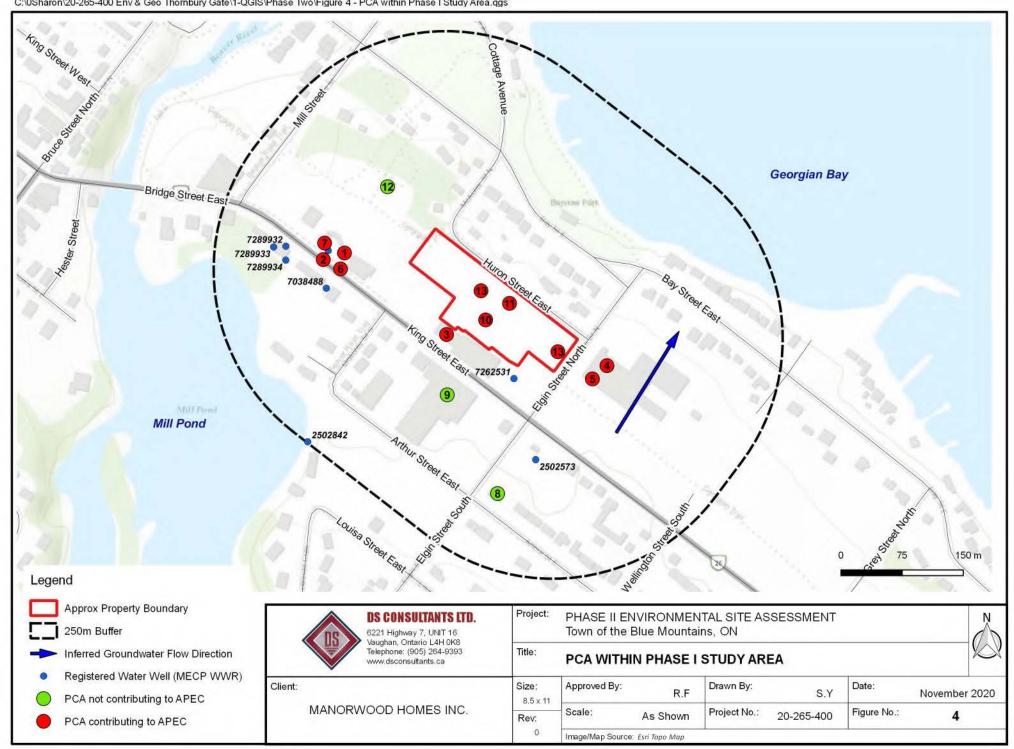
Monitoring well (XCG 1995)

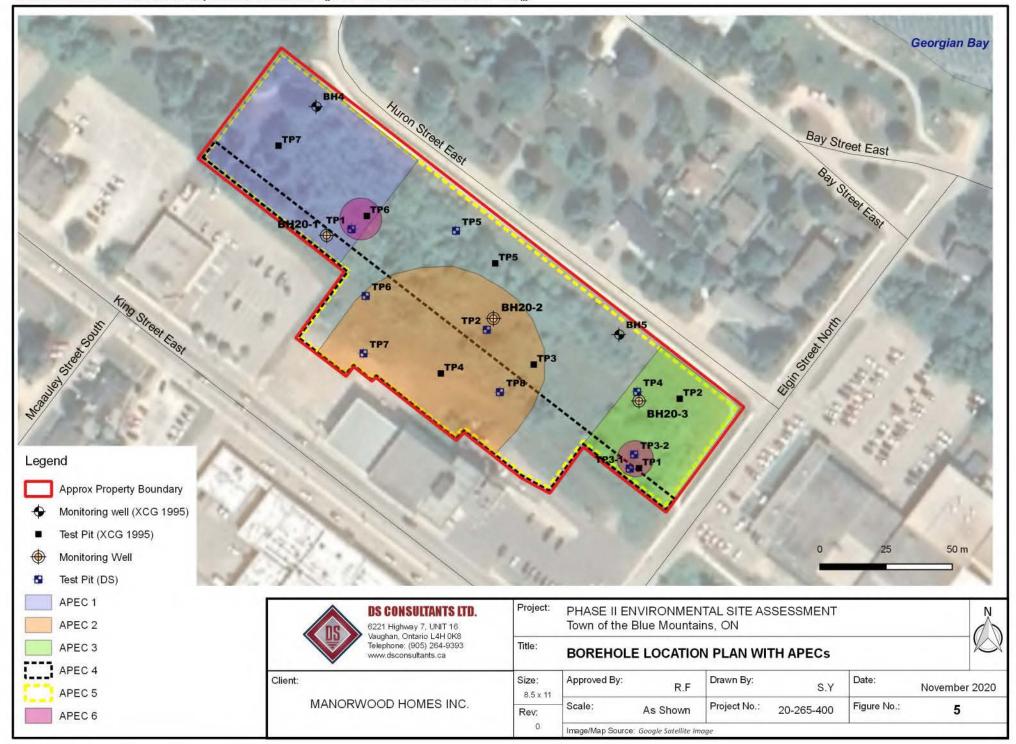
Test Pit (XCG 1995)

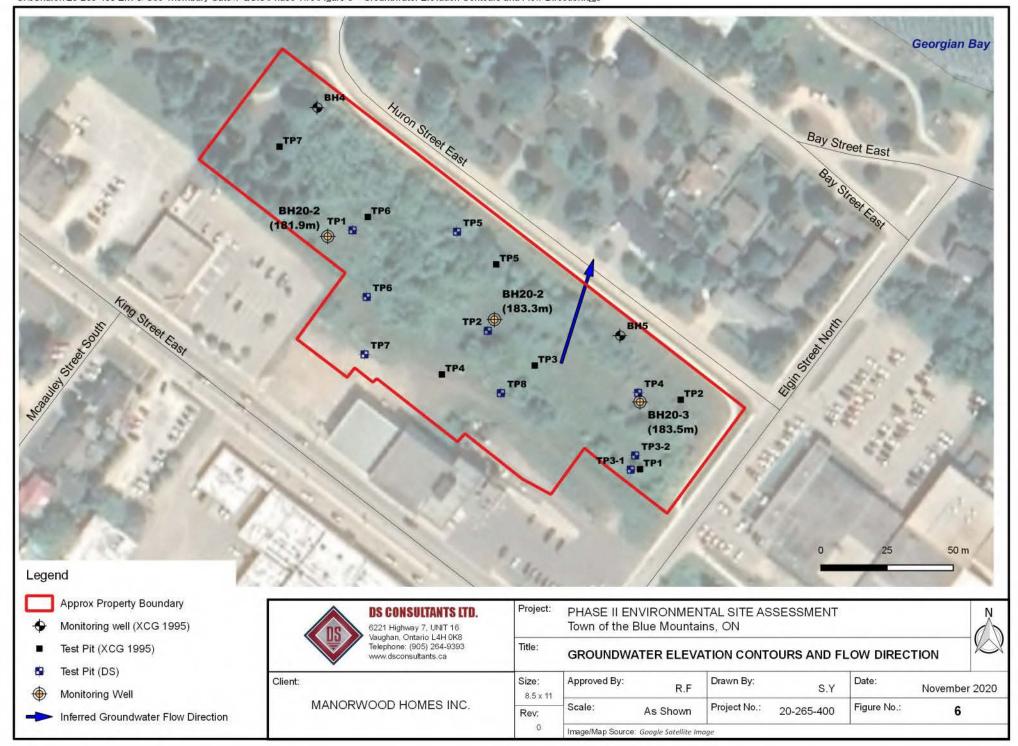
6221 Highway 7, UNIT 16 Vaughan, Ontario L4H 0K8 Telephone: (905) 264-9393 www.dsconsultants.ca

Client:

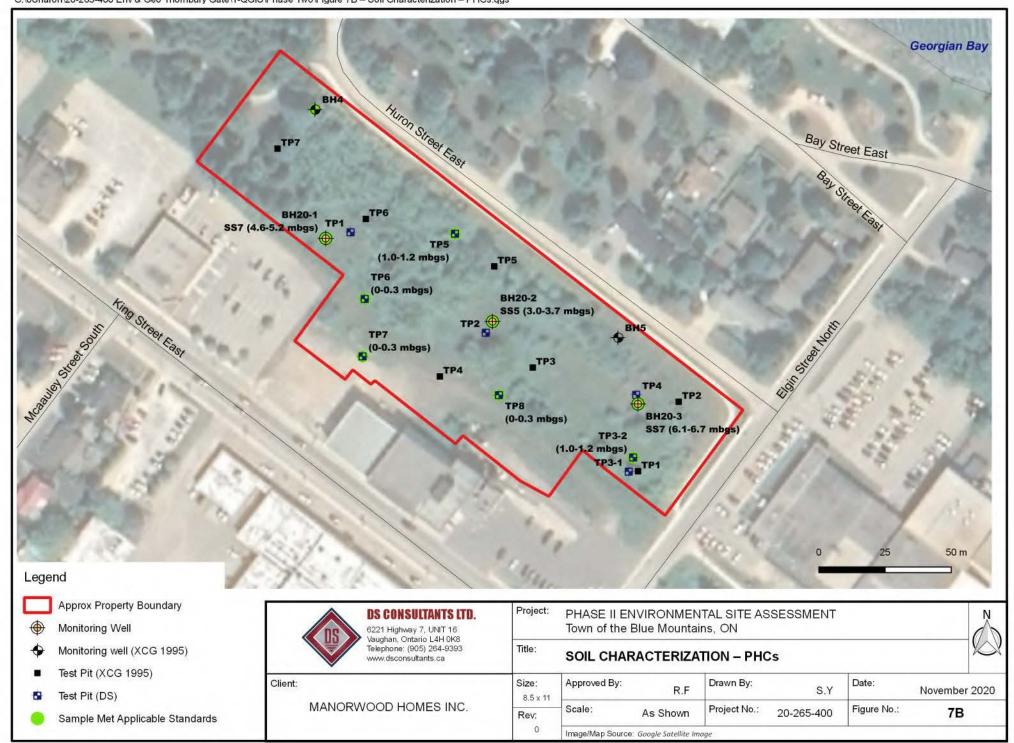

MANORWOOD HOMES INC.

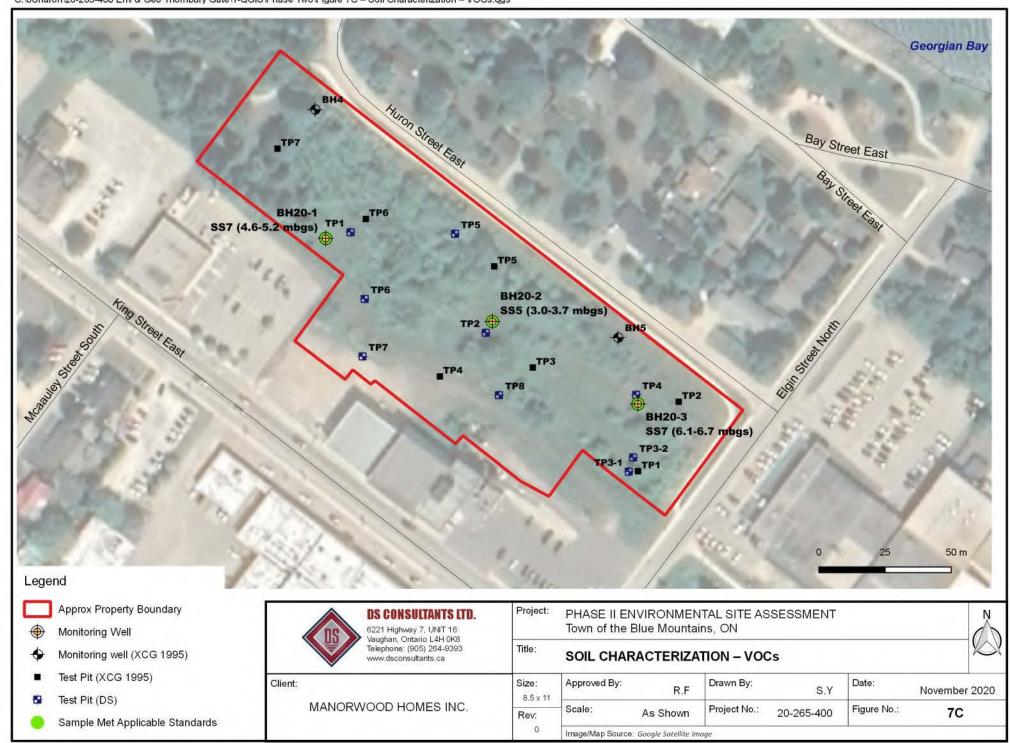

Project:	PHASE II ENVIRONMENTAL SITE ASSESSMENT
	Town of the Blue Mountains ON

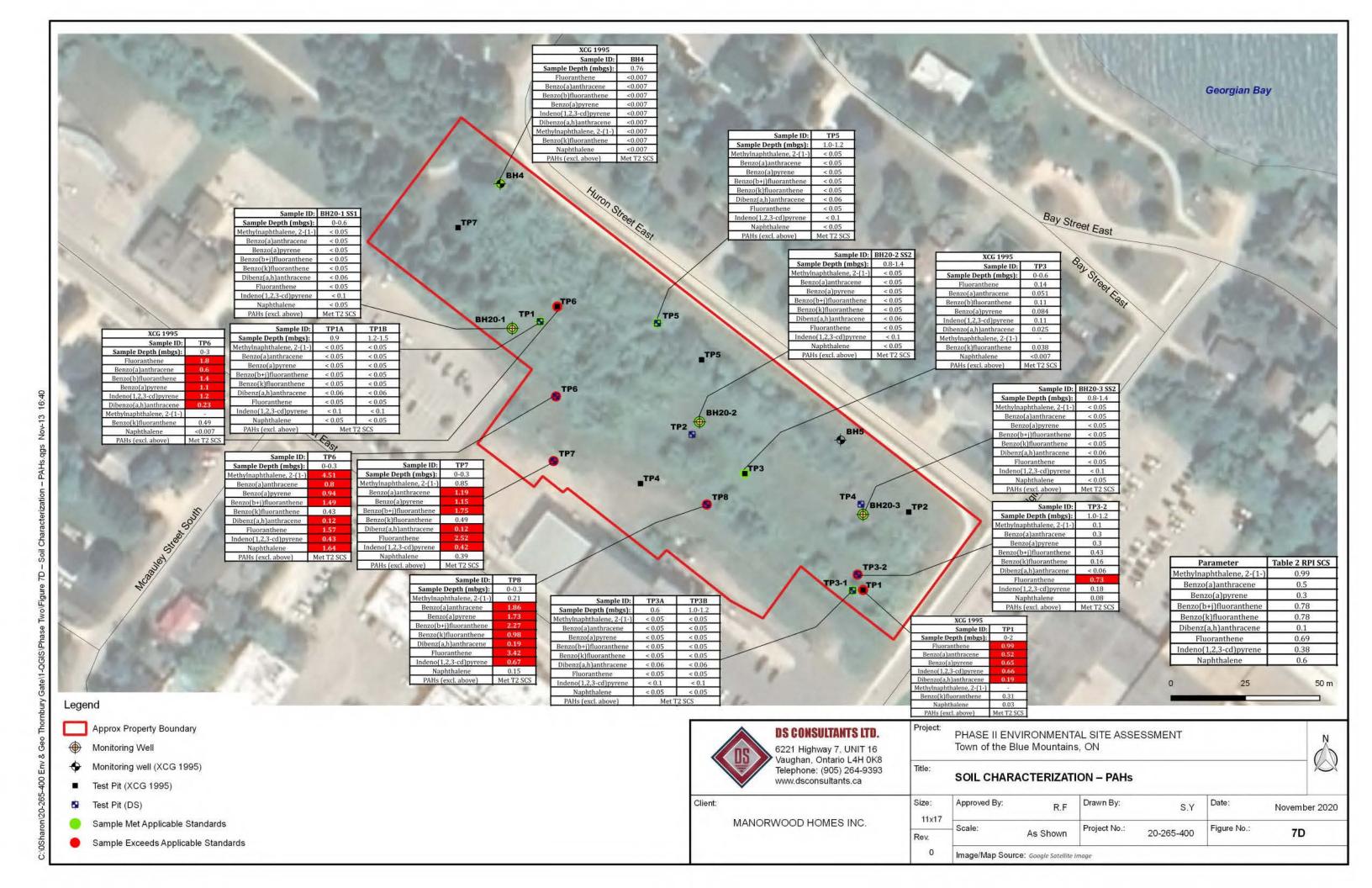

Title:

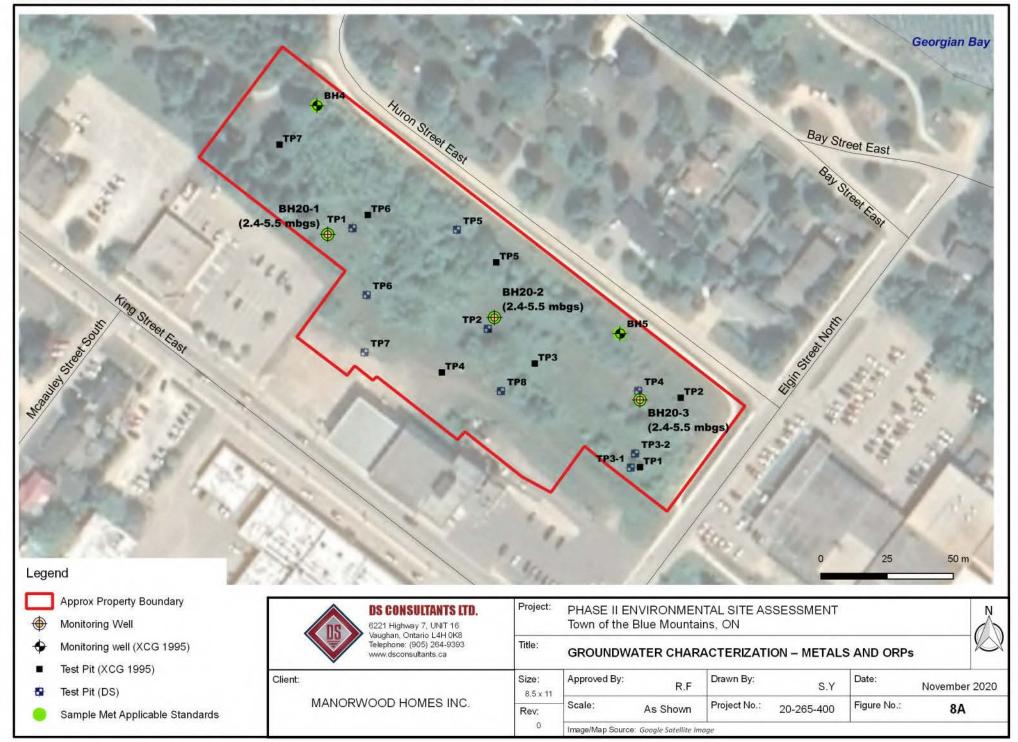

PHASE II PROPERTY SITE PLAN

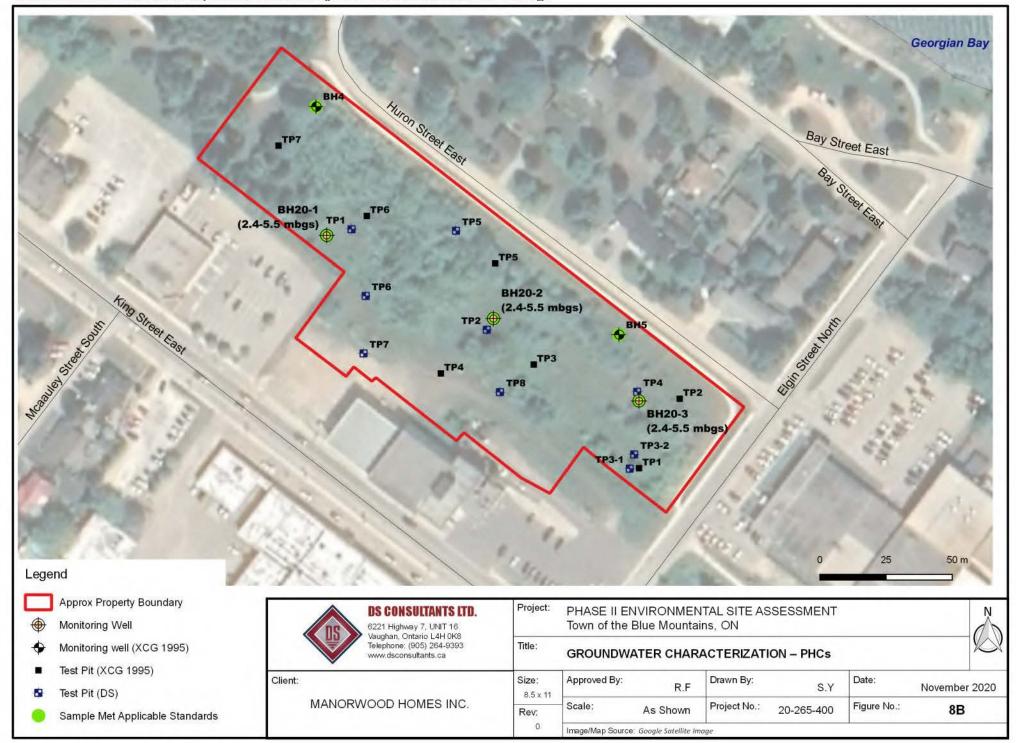
Size: 8.5 x 11	Approved By: R.F		Drawn By:	S.Y	Date: November 20	
Rev:	Scale:	As Shown	Project No.:	20-265-400	Figure No.:	2
0	Image/Map Source	e: Google Satellite In	nage			

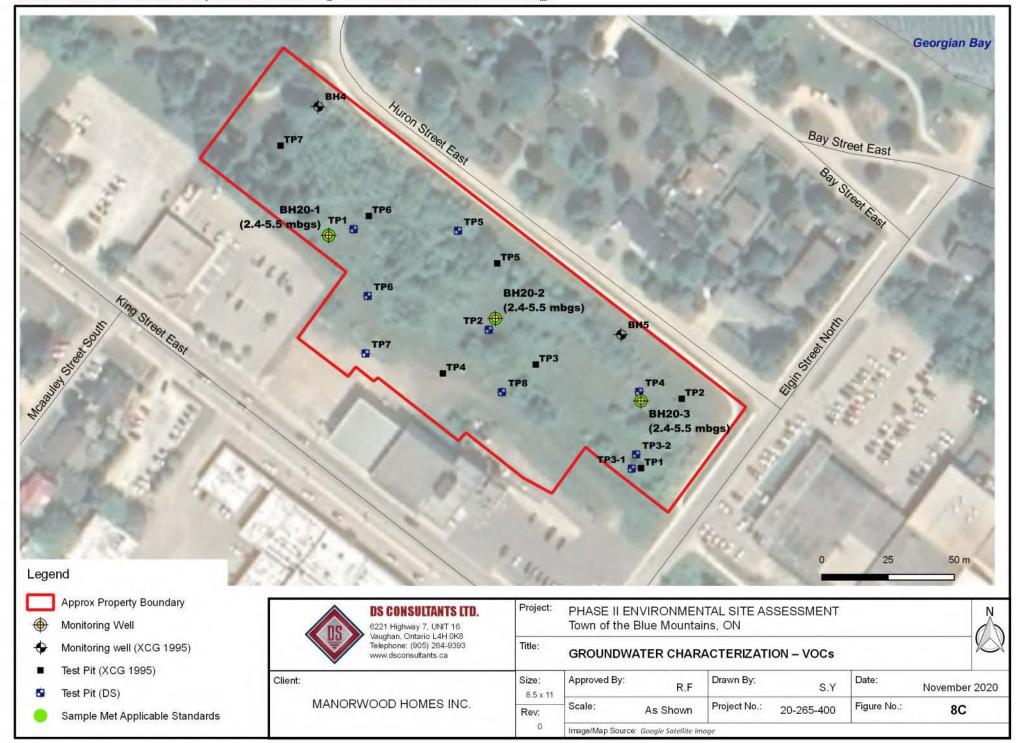


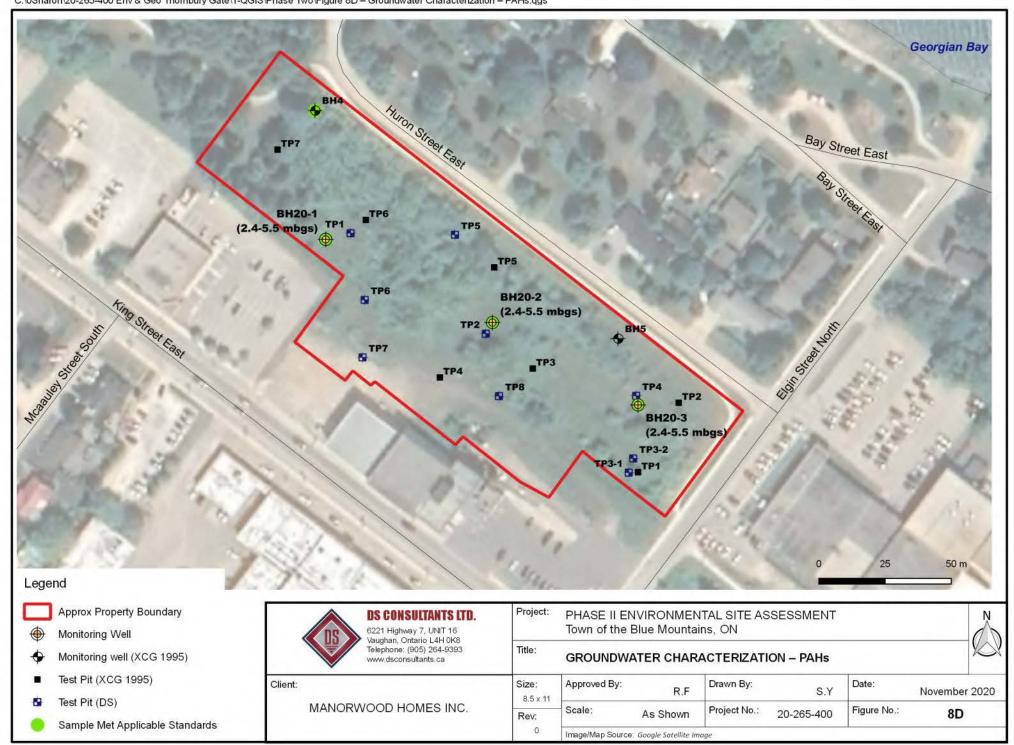












Tables

Table 1: Summary of Monitoring Well Installation and Groundwater Data

	Well ID		BH4	ВН5	BH20-1	BH20-2	BH20-3
	Installed By:		XCG	XCG	DS	DS	DS
In	stallation Date:		12-Apr-95	12-Apr-95	01-0ct-20	01-0ct-20	01-0ct-20
	Well Status:		Decommissioned	Decommissioned	Active	Active	Active
	EastUTM17		NM	NM	543947	544010.1	544065.32
	NorthUTM17		NM	NM	4934285	4934254	4934223.6
Inner Diameter		(mm)	50	50	50	50	50
Surface Elevation	n	(masl)	186*	186*	186.20	185.90	186.80
Bottom of Concrete Seal/Top of Bentonite Seal		mbgs	0.3	0.3	0.30	0.30	0.30
		masl	185.7	185.7	185.90	185.60	186.50
Bottom of Bento	nite Seal/Top	mbgs	0.5	0.5	2.10	2.10	1.80
of Sand Pack		masl	185.5	185.5	184.10	183.80	185.00
Top of Well Scre	Δn	mbgs	2.5	2.5	2.40	2.40	2.40
Top of Well Sere	CII	masl	183.5	183.5	183.80	183.50	184.40
Well Screen Leng	gth	m	3	3	3.10	3.10	3.10
Bottom of Well S	Ceroon	mbgs	5.5	5.5	5.50	5.50	5.50
Bottom of Well 3	oci een	masl	180.5	180.5	180.70	180.40	181.30
			GW Monito	ring			
06-0ct-20	Depth to GW	mbgs	5.47	3.98	4.30	2.30	3.30
00-001-20	GW Elevation	masl	180.53	182.02	181.90	183.60	183.50

^{* =} The surface elevation for the monitoring wells installed by XCG is estimated from google earth.
A survey was not completed by the XCG investigation, and the monitoring wells are no longer present.

Table 2: Summary of Soil Samples Submitted for Chemical Analysis

Borehole ID	Sample No.	Sample Depth (mbgs)	Soil Description	Parameter Analyzed	APEC Investigated
BH20-1	SS2	0.8-1.4	Sand and Gravel	Metals and ORPs, PAHs	APEC-4, APEC-5
	SS7	4.6-5.2	Clayey Silt	PHCs, VOCs	APEC-4, APEC-5
	SS1	0-0.6	Sand and Gravel	Metals and ORPs	APEC-5
BH20-2	SS2	0.8-1.4	Sand and Gravel	PAHs	APEC-5
	SS5	3.0-3.7	Clayey Silt	PHCs, VOCs	APEC-5
	SS1	0-0.6	Sand and Gravel	Metals and ORPs	APEC-5
BH20-3	SS2	0.8-1.4	Sand and Gravel	PAHs	APEC-5
	SS7	6.1-6.7	Sand	PHCs, VOCs	APEC-5
TP1	TP1-A	0.9	Sand and Gravel	PAHs	APEC-6
	TP1-B	1.2-1.5	Sand and Gravel	PAHs	APEC-6
TP3-1	TP3-1A TP3-1A Dup1	0.6	Sand and Gravel	PAHs	APEC-4, APEC-5, APEC-6
142-1	TP3-1B	1.0-1.2	Sand and Gravel	PAHs	APEC-4, APEC-5, APEC-6
TP3-2	TP3-2	1.0-1.2	Fill	Metals and ORPs, PHCs, PAHs	APEC-5, APEC-6
TP5	TP5	1.0-1.2	Fill	Metals and ORPs, PHCs	APEC-5
TP6	TP6	0-0.3	Sand and Gravel	Metals and ORPs, PHCs	APEC-4, APEC-5
TP6 Dup2	TP6 Dup2			Metals and ORPs	
TP7	TP7	0-0.3	Sand and Gravel	Metals and ORPs, PHCs	APEC-4, APEC-5
TP8	TP8	0-0.3	Sand and Gravel	Metals and ORPs, PHCs	APEC-4, APEC-5

Table 3: Summary of Groundwater Samples Submitted for Chemical Analysis

Well ID			reen (masl)	Sample Date	Parameter Analyzed	APEC Investigated
BH20-1	180.70	·	183.80	15-Oct-20	Metals and ORPs, PAHs, PHCs, VOCs	APEC-1
BH20-2	180.40		183.50	15-Oct-20	Metals and ORPs, PAHs, PHCs, VOCs	APEC-2
BH20-3	181.30	-	184.40	15-Oct-20	Metals and ORPs, PAHs, PHCs, VOCs	APEC-3

Table 4: Summary of APECs Investigated

APEC	Description	PCOCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed	
APEC-1	West side of Property - attributed to western off-site potentially contaminating activites	Metals, PHCs, BTEX	Groundwater	BH20-1	BH20-1	Metals and ORPs, PAHs, PHCs, VOCs	
APEC-2	Centre south portion of the Property	PHCs, VOCs, Metals	Groundwater	BH20-2	ВН20-2	Metals and ORPs, PAHs, PHCs, VOCs	
APEC-3	East side of the Property	Metals, As, Sb, Se, PHCs, VOCs, PAHs	Groundwater	вн20-3	вн20-3	Metals and ORPs, PAHs, PHCs, VOCs	
					TP3-1A		
				TP3-1	TP3-1A Dup1	PAHs	
					TP3-1B		
APEC-4	APEC-4 Southern border of the Property		Soil	TP6	TP6	Metals and ORPs, PHCs, PAHs	
	and the southern border or the Property	BTEX, PAHs		TP6 Dup2	TP6 Dup2	Metals and ORPs	
				TP7	TP7	Metals and ORPs, PHCs, PAHs	
				TP8	TP8	Metals and ORPs, PHCs, PAHs	
					SS1	PAHs	
APEC-5	Entire Property	Metals, As, Sb, Se, B-HWS, CN, EC, Cr (VI), Hg, low or have	Soil	ВН20-1	SS2	Metals and ORPs	
		SAR, PHCs, VOCs, PAHs			SS7	PHCs, VOCs	
					SS1	Metals and ORPs	
				BH20-2	SS2	PAHs	
					SS5	PHCs, VOCs	

Table 4: Summary of APECs Investigated

APEC	Description	PCOCs	Media	Boreholes Within APEC	Samples Analysed	Parameter Analyzed	
					SS1	Metals and ORPs	
				BH20-3	SS2	PAHs	
			<u> </u>		SS7	PHCs, VOCs	
					TP3-1A		
	APEC-5 Entire Property	Metals, As, Sb,		TP3-1	TP3-1A Dup1	PAHs	
		Se, B-HWS, CN, EC, Cr (VI), Hg,			TP3-1B		
APEC-5		low or high pH,	Soil	TP3-2	TP3-2	Metals and ORPs, PHCs, PAHs	
		SAR, PHCs, VOCs, PAHs		TP5	TP5	Metals and ORPs, PHCs, PAHs	
				TP6	TP6	Metals and ORPs, PHCs, PAHs	
				TP6 Dup2	TP6 Dup2	Metals and ORPs	
				TP7	TP7	Metals and ORPs, PHCs, PAHs	
				TP8	TP8	Metals and ORPs, PHCs, PAHs	
				TP1	TP1-A	PAHs	
					TP1-B		
AEPC-6	Vicinity of previous test pits	PAHs	Soil		TP3-1A		
				TP3-1	TP3-1A Dup1	PAHs	
					TP3-1B		
				TP3-2	TP3-2	PAHs	

Table 5: Summary of Metals and ORPs in Soil

Parameter		BH4	BH5	TP1	TP2	TP3	TP4	TP5	TP6	TP7	BH20-1 SS2
Date of Collection		13-Apr-95	Oct-5-20								
Date Reported	MECP	25-Apr-95	Oct-14-2020								
Sampling Depth (mbgs)	Table 2	0.76	0.76	0-0.6	0-0.6	0-0.6	0-0.6	0-1.21	0-0.91	0-0.91	0.8-1.4
Analytical Report Reference No.	RPI SCS	95-630-4, 3810	95-630-4, 3811	95-630-4, 3812	95-630-4, 3813	95-630-4, 3814	95-630-4, 3815	95-630-4, 3816	95-630-4, 3817	95-630-4, 3818	CA15940- OCT20 9
Antimony	7.5	<1	<1	<1	-	-	-	-	-	-	< 0.8
Arsenic	18	1	2	2	2	1	4	2	4.91	2.72	4.1
Barium	390	8.6	12.4	32.1	14.2	13.2	31.1	11.1	31.63	12.64	21
Beryllium	4	0.9	1.8	2	1	0.9	2.8	0.9	1.09	0.97	0.19
Boron (total)	120	-	-	-	•	-	-	-	-	-	7
Boron (Hot Water Soluble)	1.5	-	-	-	-	-	-	-	-	-	< 0.5
Cadmium	1.2	0.9	<0.3	< 0.03	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	0.04
Chromium Total	160	8.6	10.6	8	14.2	10.4	10.4	9.4	7.64	7.78	8.5
Chromium VI	8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.2
Cobalt	22	3.4	4.4	3	4.1	3.8	7.5	3.4	2.18	2.92	3.5
Copper	140	8.6	10.6	8	11.2	12.3	19.8	7.7	19.63	10.7	12
Cyanide (CN-)	0.051	-	-	-	-	-	-	-	-	-	< 0.05
Electrical Conductivity (mS/cm)	0.7	117	164	81	41	53	50	46	126	52	0.13
Lead	120	4	4	36	8	12	15	7	51.27	9.73	4.2
Mercury	0.27	0.02	0.02	0.09	0.03	0.06	0.03	0.02	0.18	0.05	< 0.05
Molybdenum	6.9	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.5
Nickel	100	5	6	15	5	7	10	5	5.45	3.89	8.3
Selenium	2.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	< 0.7
Silver	20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.05
Sodium Adsorption Ratio	5	0.12	0.08	0.16	0.11	0.08	0.17	0.09	0.08	0.09	0.2
Thallium	1	-			i		-	-			0.05
Uranium	23	-	-	-	-	-	-	-	-	-	0.41
Vanadium	86	7.7	9.8	9	9.2	10.4	12.2	7.7	9.82	7.78	9
Zinc	340	22.3	14.2	44.1	25.4	23.6	26.4	23.9	74.18	26.26	43
рН	NV	7.2	7.7	7.1	6.8	7	6.8	8.04	7.41	6.56	8.11

16

Table 5: Summary of Metals and ORPs in Soil

Parameter		BH20-2 SS1	BH20-3 SS1	TP3-2	TP5	TP6	TP6 Dup2	TP7	TP8
Date of Collection		Oct-5-20	Oct-5-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20
Date Reported	MECP	Oct-14-2020	Oct-14-2020	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20
Sampling Depth (mbgs)	Table 2 RPI SCS	0-0.6	0-0.6	1.0-1.2	1.0-1.2	0-0.3	0-0.3	0-0.3	0-0.3
	KPI SCS	CA15940-	CA15940-	CA14932-	CA14932-	CA14932-	CA14932-	CA14932-	CA14932-
Analytical Report Reference No.		OCT20	OCT20	OCT20	OCT20	OCT20	OCT20	OCT20	OCT20
Antimony	7.5	< 0.8	14 < 0.8	< 0.8	15 < 0.8	16 0.9	17 0.9	18 < 0.8	19 < 0.8
Arsenic	18	3.9	4.7	4.4	2.9	9.5	9.2	16	4
Barium	390	27	31	35	26	61	58	50	36
Beryllium	4	0.32	0.24	0.3	0.3	0.4	0.37	0.26	0.27
Boron (total)	120	9	7	8	9	9	9	7	8
Boron (Hot Water Soluble)	1.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cadmium	1.2	0.1	0.08	0.14	0.04	0.51	0.5	0.34	0.15
Chromium Total	160	13	9.9	11	11	12	11	12	12
Chromium VI	8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cobalt	22	6.6	4.8	5.5	5.1	5.6	5.2	4.6	5.6
	140	26	20	24	17	60	5.2	31	30
Copper Cyanide (CN-)	0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
, ,		+							
Electrical Conductivity (mS/cm)	0.7	0.15	0.2	0.14	0.14	0.2	0.19	0.27	0.21
Lead	120	16	5.9	23	6.6	170	160	170	25
Mercury	0.27	< 0.05	< 0.05	< 0.05	< 0.05	0.35	0.36	0.15	< 0.05
Molybdenum	6.9	0.2	0.6	0.4	0.2	1.2	1.2	0.5	0.4
Nickel	100	15	11	13	11	16	17	11	13
Selenium	2.4	< 0.7	< 0.7	< 0.7	< 0.7	0.9	0.9	< 0.7	< 0.7
Silver	20	0.17	< 0.05	0.07	< 0.05	0.13	0.12	0.12	0.07
Sodium Adsorption Ratio	5	0.03	0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2
Thallium	1	0.09	0.07	0.09	0.08	0.22	0.21	0.1	0.09
Uranium	23	0.41	0.42	0.5	0.45	0.56	0.58	0.49	0.39
Vanadium	86	16	11	14	14	17	17	15	17
Zinc	340	46	42	64	40	190	180	200	88
рН	NV	7.74	7.81	7.08	7.52	7.64	7.61	7.66	7.58

For Table Notes see **Notes for Soil and Groundw**a

Table 6: Summary of PHCs in Soil

Parameter		BH20-1 SS7	BH20-2 SS5	BH20-3 SS7	TP3-2	TP5	TP6	TP7	TP8
Date of Collection		Oct-5-20	Oct-5-20	Oct-5-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20
Date Reported	MECP Table	Oct-14-2020	Oct-14-2020	Oct-14-2020	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20
Sampling Depth (mbgs)	2 RPI SCS	4.6-5.2	3.0-3.7	6.1-6.7	1.0-2.1	1.0-2.1	0-0.3	0-0.3	0-0.3
Analytical Report Reference No.		CA15940- OCT20 10	CA15940-OCT20 13	CA15940- OCT20 16	CA14932- OCT20 14	CA14932- OCT20 15	CA14932- OCT20 16	CA14932- OCT20 18	CA14932- OCT20 19
Benzene	0.21	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.07	< 0.02	< 0.02
Ethylbenzene	1.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.17	< 0.05	< 0.05
Toluene	2.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.51	0.06	< 0.05
Xylenes (Total)	3.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.25	< 0.05	< 0.05
F1 (C6-C10) -BTEX	55	< 10	< 10	< 10	< 10	< 10	21	< 10	< 10
F2 (C10-C16)	98	11	< 10	20	< 10	< 10	20	< 10	< 10
F3 (C16-C34)	300	< 50	< 50	52	51	<50	157	194	81
F4 (C34-C50)	2800	< 50	< 50	< 50	<50	<50	125	251	55

Table 7: Summary of VOCs in Soil

Parameter		BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
Date of Collection		Oct-5-20	Oct-5-20	Oct-5-20
Date Reported	MECP	Oct-14-2020	Oct-14-2020	Oct-14-2020
Sampling Depth (mbgs)	Table 2	4.6-5.2	3.0-3.7	6.1-6.7
Analytical Report Reference No.	RPI SCS	CA15940- OCT20 10	CA15940- OCT20 13	CA15940- OCT20 16
Tetrachloroethane, 1,1,1,2-	0.058	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,1-	0.38	< 0.05	< 0.05	< 0.05
Tetrachloroethane, 1,1,2,2-	0.05	< 0.05	< 0.05	< 0.05
Trichloroethane, 1,1,2-	0.05	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,1-	0.47	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,1-	0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,2-	1.2	< 0.05	< 0.05	< 0.05
Dichloroethane, 1,2-	0.05	< 0.05	< 0.05	< 0.05
Dichloropropane, 1,2-	0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,3-	4.8	< 0.05	< 0.05	< 0.05
Dichloropropene, 1,3-	0.05	< 0.05	< 0.05	< 0.05
Dichlorobenzene, 1,4-	0.083	< 0.05	< 0.05	< 0.05
Acetone	16	< 0.5	< 0.5	< 0.5
Bromomethane	0.05	< 0.05	< 0.05	< 0.05
Carbon Tetrachloride	0.05	< 0.05	< 0.05	< 0.05
Chlorobenzene	2.4	< 0.05	< 0.05	< 0.05
Chloroform	0.05	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-cis-	1.9	< 0.05	< 0.05	< 0.05
Dichloroethylene, 1,2-trans-	0.084	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	16	< 0.05	< 0.05	< 0.05
Ethylene dibromide	0.05	< 0.05	< 0.05	< 0.05
Methyl Ethyl Ketone	16	< 0.5	< 0.5	< 0.5
Methyl Isobutyl Ketone	1.7	< 0.5	< 0.5	< 0.5
Methyl tert-Butyl Ether (MTBE)	0.75	< 0.05	< 0.05	< 0.05
Methylene Chloride	0.1	< 0.05	< 0.05	< 0.05
Hexane (n)	2.8	< 0.05	< 0.05	< 0.05

Table 7: Summary of VOCs in Soil

Parameter		BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
Date of Collection		Oct-5-20	Oct-5-20	Oct-5-20
Date Reported		Oct-14-2020	Oct-14-2020	Oct-14-2020
Sampling Depth (mbgs)	Table 2 RPI SCS	4.6-5.2	3.0-3.7	6.1-6.7
Analytical Report Reference No.	KF1 3C3	CA15940- OCT20 10	CA15940- OCT20 13	CA15940- OCT20 16
Styrene	0.7	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	0.28	< 0.05	< 0.05	< 0.05
Trichloroethylene	0.061	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	4	< 0.05	< 0.05	< 0.05
Vinyl Chloride	0.02	< 0.02	< 0.02	< 0.02

Table 8: Summary of PAHs in Soil

Parameter		BH4	TP1	TP3	TP6	BH20-2 SS2	BH20-3 SS2	BH20-1 SS1	TP1-A
		D114	IFI	113	110	B1120-2 332	BHZ0-3 332	BH20-1 331	IF I-A
Date of Collection		13-Apr-95	13-Apr-95	13-Apr-95	13-Apr-95	Oct-5-20	Oct-5-20	Oct-5-20	Oct-29-20
Date Reported		25-Apr-95	25-Apr-95	25-Apr-95	25-Apr-95	Oct-14-2020	Oct-14-2020	Oct-14-2020	Nov-9-20
Sampling Depth (mbgs)	2 RPI SCS	0.76	0-0.6	0-0.6	0-0.91	0.8-1.4	0.8-1.4	0-0.6	0.9
Analytical Report Reference No.		95-630-4, 3810	95-630-4, 3812	95-630-4, 3814	95-630-4, 3817	CA15940-OCT20 12	CA15940-OCT20 15	CA15940- OCT20 17	CA14932- OCT20 9
Methylnaphthalene, 2-(1-)	0.99	-	-	-	-	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	7.9	< 0.007	0.015	< 0.007	< 0.007	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	0.15	< 0.007	< 0.007	< 0.007	< 0.007	< 0.05	< 0.05	< 0.05	< 0.05
Anthracene	0.67	< 0.007	0.032	0.022	0.2	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	0.5	< 0.007	0.52	0.051	0.6	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	0.3	< 0.007	0.65	0.084	1.1	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(b+j)fluoranthene	0.78	< 0.007	0.67	0.11	1.4	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(g,h,i)perylene	6.6	< 0.007	0.62	0.062	0.59	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	0.78	< 0.007	0.31	0.038	0.49	< 0.05	< 0.05	< 0.05	< 0.05
Chrysene	7	< 0.007	0.58	0.068	0.95	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzo(a,h)anthracene	0.1	< 0.007	0.19	0.025	0.23	< 0.06	< 0.06	< 0.06	< 0.06
Fluoranthene	0.69	< 0.007	0.99	0.14	1.8	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	62	< 0.007	0.014	0.007	< 0.007	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	0.38	< 0.007	0.66	0.11	1.2	< 0.1	< 0.1	< 0.1	< 0.1
Naphthalene	0.6	< 0.007	0.03	< 0.007	< 0.007	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	6.2	< 0.007	0.24	0.085	1.1	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	78	< 0.007	0.83	0.11	1.4	< 0.05	< 0.05	< 0.05	< 0.05

Table 8: Summary of PAHs in Soil

-										
Parameter		TP1-B	TP3-1A	TP3-1B	TP3-1A Dup1	TP3-2	TP5	TP6	TP7	TP8
Date of Collection		Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20	Oct-29-20
Date Reported		Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20	Nov-9-20
Sampling Depth (mbgs)	2 RPI SCS	1.2-1.5	0.6	1.0-1.2	0.6	1.0-1.2	1.0-1.2	0-0.3	0-0.3	0-0.3
Analytical Report Reference No.		CA14932- OCT20	CA14932- OCT20	CA14932- OCT20	CA14932-OCT20 13	CA14932- OCT20	CA14932- OCT20	CA14932- OCT20	CA14932- OCT20	CA14932- OCT20
		10	11	12		14	15	16	18	19
Methylnaphthalene, 2-(1-)	0.99	< 0.05	< 0.05	< 0.05	< 0.05	0.1	< 0.05	4.51	0.85	0.21
Acenaphthene	7.9	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	0.08	0.2	0.28
Acenaphthylene	0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.11	0.11	< 0.05
Anthracene	0.67	< 0.05	< 0.05	< 0.05	< 0.05	0.1	< 0.05	0.2	0.44	0.66
Benzo(a)anthracene	0.5	< 0.05	< 0.05	< 0.05	< 0.05	0.3	< 0.05	0.8	1.19	1.86
Benzo(a)pyrene	0.3	< 0.05	< 0.05	< 0.05	< 0.05	0.3	< 0.05	0.94	1.15	1.73
Benzo(b+j)fluoranthene	0.78	< 0.05	< 0.05	< 0.05	< 0.05	0.43	< 0.05	1.49	1.75	2.27
Benzo(g,h,i)perylene	6.6	< 0.1	< 0.1	< 0.1	< 0.1	0.22	< 0.1	0.55	0.48	0.71
Benzo(k)fluoranthene	0.78	< 0.05	< 0.05	< 0.05	< 0.05	0.16	< 0.05	0.43	0.49	0.98
Chrysene	7	< 0.05	< 0.05	< 0.05	< 0.05	0.31	< 0.05	0.91	1.1	1.66
Dibenzo(a,h)anthracene	0.1	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.12	0.12	0.19
Fluoranthene	0.69	< 0.05	< 0.05	< 0.05	< 0.05	0.73	< 0.05	1.57	2.52	3.42
Fluorene	62	< 0.05	< 0.05	< 0.05	< 0.05	0.07	< 0.05	0.07	0.24	0.3
Indeno(1,2,3-cd)pyrene	0.38	< 0.1	< 0.1	< 0.1	< 0.1	0.18	< 0.1	0.43	0.42	0.67
Naphthalene	0.6	< 0.05	< 0.05	< 0.05	< 0.05	0.08	< 0.05	1.64	0.39	0.15
Phenanthrene	6.2	< 0.05	< 0.05	< 0.05	< 0.05	0.68	< 0.05	1.45	2.24	3.46
Pyrene	78	< 0.05	< 0.05	< 0.05	< 0.05	0.57	< 0.05	1.31	2.12	3.06

Table 9: Summary of Metals and ORPs in Groundwater

Parameter		BH4	ВН5	BH20-1	BH20-2	BH20-3
Date of Collection	MECP	13-Apr-95	13-Apr-95	15-0ct-20	15-0ct-20	15-0ct-20
Date Reported	Table 2 RPI SCS	25-Apr-95	25-Apr-95	22-Oct-20	22-Oct-20	22-Oct-20
Screen Interval (mbgs)	KPI SCS	2.5-5.5	2.5-5.5	2.4-5.5	2.4-5.5	2.4-5.5
Analytical Report Reference No.		95-630-4, 3803	95-630-4, 3804	CA14445- OCT20 7	CA14445- OCT20 8	CA14445- OCT20 9
Antimony	6	-	=	0.15	< 0.09	0.3
Arsenic	25	-	=	< 0.2	< 0.2	0.7
Barium	1000	-	-	43.7	31.2	58.2
Beryllium	4	-	-	< 0.007	< 0.007	< 0.007
Boron (total)	5000	-	-	15	17	85
Cadmium	2.7	-	-	< 0.003	0.005	< 0.003
Chromium Total	50	-	-	0.14	3.94	0.11
Chromium VI	25	-	-	< 0.2	< 0.2	< 0.2
Cobalt	3.8	-	-	0.12	0.672	0.802
Copper	87	-	-	1.9	3.4	2.4
Cyanide (CN-)	66	-	-	< 2	< 2	< 2
Lead	10	< 0.02	< 0.02	0.1	0.6	0.09
Mercury	0.29	-	-	< 0.01	< 0.01	< 0.01
Molybdenum	70	-	-	0.32	0.88	4.8
Nickel	100	-	-	0.3	1.7	2.2
Selenium	10	-	-	0.04	< 0.04	0.14
Silver	1.5	-	-	< 0.05	< 0.05	< 0.05
Thallium	2	-	-	< 0.005	0.011	0.029
Uranium	20	-	-	0.008	0.596	1.37
Vanadium	6.2	-		0.07	0.53	0.25
Zinc	1100	0.02	0.01	< 2	5	< 2
рН	NV	8.3	8.1	7.35	7.64	7.63

Table 10: Summary of PHCs in Groundwater

Parameter		BH4	вн5	BH20-1	BH20-2	ВН20-3
Date of Collection	MECP	13-Apr-95	13-Apr-95	15-0ct-20	15-Oct-20	15-Oct-20
Date Reported		25-Apr-95	25-Apr-95	22-Oct-20	22-Oct-20	22-Oct-20
Screen Interval (mbgs)	RPI SCS	2.5-5.5	2.5-5.5	2.4-5.5	2.4-5.5	2.4-5.5
Analytical Report Reference No.		95-630-4, 3803	95-630-4, 3804	CA14445- OCT20 7	CA14445- OCT20 8	CA14445- OCT20 9
Benzene	5	<0.0005	0.0016	< 0.5	< 0.5	< 0.5
Ethylbenzene	2.4	<0.0005	0.0003	< 0.5	< 0.5	< 0.5
Toluene	24	<0.0005	0.0015	< 0.5	< 0.5	< 0.5
Xylenes (Total)	300	<0.0005	0.0002	< 0.5	< 0.5	< 0.5
F1 (C6 to C10) minus BTEX	750	-	-	<25	<25	<25
F2 (C10 to C16)	150	-	-	<100	<100	<100
F3 (C16 to C34)	500	-	-	<200	<200	<200
F4 (C34 to C50) minus PAHs	500	=	=	<200	<200	<200

Table 11: Summary of VOCs in Groundwater

Parameter		BH20-1	BH20-2	ВН20-3
Date of Collection	MECD	15-0ct-20	15-0ct-20	15-Oct-20
Date Reported	MECP Table 2	22-Oct-20	22-Oct-20	22-Oct-20
Screen Interval (mbgs)	RPI SCS	2.4-5.5	2.4-5.5	2.4-5.5
Analytical Report Reference No.		CA14445- OCT20 7	CA14445- OCT20 8	CA14445- OCT20 9
Tetrachloroethane, 1,1,1,2-	1.1	< 0.5	< 0.5	< 0.5
Trichloroethane, 1,1,1-	200	< 0.5	< 0.5	< 0.5
Tetrachloroethane, 1,1,2,2-	1	< 0.5	< 0.5	< 0.5
Trichloroethane, 1,1,2-	4.7	< 0.5	< 0.5	< 0.5
Dichloroethane, 1,1-	5	< 0.5	< 0.5	< 0.5
Dichloroethylene, 1,1-	1.6	< 0.5	< 0.5	< 0.5
Dichlorobenzene, 1,2-	3	< 0.5	< 0.5	< 0.5
Dichloroethane, 1,2-	1.6	< 0.5	< 0.5	< 0.5
Dichloropropane, 1,2-	5	< 0.5	< 0.5	< 0.5
Dichlorobenzene, 1,3-	59	< 0.5	< 0.5	< 0.5
Dichloropropene, 1,3-	0.5	< 0.5	< 0.5	< 0.5
Dichlorobenzene, 1,4-	1	< 0.5	< 0.5	< 0.5
Acetone	2700	< 30	< 30	< 30
Bromomethane	0.89	< 0.5	< 0.5	< 0.5
Carbon Tetrachloride	0.79	< 0.2	< 0.2	< 0.2
Chlorobenzene	30	< 0.5	< 0.5	< 0.5
Chloroform	2.4	< 0.5	< 0.5	< 0.5
Dichloroethylene, 1,2-cis-	1.6	< 0.5	< 0.5	< 0.5
Dichloroethylene, 1,2-trans-	1.6	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	590	< 2	< 2	< 2
Ethylene dibromide	0.2	< 0.2	< 0.2	< 0.2
Methyl Ethyl Ketone	1800	< 20	< 20	< 20
Methyl Isobutyl Ketone	640	< 20	< 20	< 20
Methyl tert-Butyl Ether (MTBE)	15	< 2	< 2	< 2
Methylene Chloride	50	< 0.5	< 0.5	< 0.5

Table 11: Summary of VOCs in Groundwater

Parameter		BH20-1	BH20-2	ВН20-3
Date of Collection	MECD	15-Oct-20	15-Oct-20	15-0ct-20
Date Reported	MECP Table 2 RPI SCS	22-Oct-20	22-Oct-20	22-Oct-20
Screen Interval (mbgs)		2.4-5.5	2.4-5.5	2.4-5.5
Analytical Report Reference No.		CA14445- OCT20 7	CA14445- OCT20 8	CA14445- OCT20 9
Hexane (n)	51	< 1	< 1	< 1
Styrene	5.4	< 0.5	< 0.5	< 0.5
Tetrachloroethylene	1.6	< 0.5	< 0.5	< 0.5
Trichloroethylene	1.6	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	150	< 5	< 5	< 5
Vinyl Chloride	0.5	< 0.2	< 0.2	< 0.2

Table 12: Summary of PAHs in Groundwater

Parameter		BH4	BH20-1	BH20-2	BH20-3
Date of Collection		13-Apr-95	15-Oct-20	15-Oct-20	15-0ct-20
Date Reported	MECP	25-Apr-95	22-Oct-20	22-Oct-20	22-Oct-20
Screen Interval (mbgs)	Table 2 RPI SCS	2.5-5.5	2.4-5.5	2.4-5.5	2.4-5.5
Analytical Report Reference No.	KPI 3C3	95-630-4, 3803	CA14445- OCT20 7	CA14445- OCT20 8	CA14445- OCT20 9
Methylnaphthalene, 2-(1-)	3.2	< 0.001	< 0.5	< 0.5	< 0.5
Acenaphthene	4.1	< 0.001	< 0.1	< 0.1	< 0.1
Acenaphthylene	1	< 0.001	< 0.1	< 0.1	< 0.1
Anthracene	2.4	< 0.001	< 0.1	< 0.1	< 0.1
Benz(a)anthracene	1	< 0.001	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	0.01	< 0.001	< 0.01	< 0.01	< 0.01
Benzo(b+j)fluoranthene	0.1	< 0.001	< 0.1	< 0.1	< 0.1
Benzo(g,h,i)perylene	0.2	< 0.001	< 0.2	< 0.2	< 0.2
Benzo(k)fluoranthene	0.1	< 0.001	< 0.1	< 0.1	< 0.1
Chrysene	0.1	< 0.001	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	0.2	< 0.001	< 0.1	< 0.1	< 0.1
Fluoranthene	0.41	< 0.001	< 0.1	< 0.1	< 0.1
Fluorene	120	< 0.001	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	0.2	< 0.001	< 0.2	< 0.2	< 0.2
Naphthalene	11	< 0.001	< 0.5	< 0.5	< 0.5
Phenanthrene	1	< 0.001	< 0.1	< 0.1	< 0.1
Pyrene	4.1	< 0.001	< 0.1	< 0.1	< 0.1

118

Table 13: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	Antimony	7.5	0.9	TP6
	Arsenic	18	16	TP7
	Barium	390	61	TP6
	Beryllium	4	0.4	TP6
	Boron (total)	120	9	BH20-2 SS1
	Boron (Hot Water Soluble)	1.5	< 0.5	All Samples
	Cadmium	1.2	0.51	TP6
	Chromium Total	160	13	BH20-2 SS1
	Chromium VI	8	< 0.2	All Samples
	Cobalt	22	6.6	BH20-2 SS1
Sc	Copper	140	60	TP6
Metals and ORPs	Cyanide (CN-)	0.051	< 0.05	All Samples
and	Electrical Conductivity (mS/cm)	0.7	0.27	TP7
etals	Lead	120	170	TP6
M	Mercury	0.27	0.36	TP6 Dup2
	Molybdenum	6.9	1.2	TP6
	Nickel	100	17	TP6 Dup2
	Selenium	2.4	0.9	TP6
	Silver	20	0.17	BH20-2 SS1
	Sodium Adsorption Ratio	5	0.2	BH20-1 SS2
	Thallium	1	0.22	TP6
	Uranium	23	0.58	TP6 Dup2
	Vanadium	86	17	TP6
	Zinc	340	200	TP7
	pH	NV	8.11	BH20-1 SS2
	Benzene	0.21	0.07	TP6
	Ethylbenzene	1.1	0.17	TP6
	Toluene	2.3	0.51	TP6
PHCs	Xylenes (Total)	3.1	1.25	TP6
ΡH	F1 (C6-C10) -BTEX	55	21	TP6
	F2 (C10-C16)	98	20	BH20-3 SS7
	F3 (C16-C34)	300	194	TP7

115

Table 13: Summary of Maximum Concentrations in Soil

	Parameter	Standard	Maximum Concentration	Location
	F4 (C34-C50)	2800	251	TP7
	Tetrachloroethane, 1,1,1,2-	0.058	< 0.05	All Samples
	Trichloroethane, 1,1,1-	0.38	< 0.05	All Samples
	Tetrachloroethane, 1,1,2,2-	0.05	< 0.05	All Samples
	Trichloroethane, 1,1,2-	0.05	< 0.05	All Samples
	Dichloroethane, 1,1-	0.47	< 0.05	All Samples
	Dichloroethylene, 1,1-	0.05	< 0.05	All Samples
	Dichlorobenzene, 1,2-	1.2	< 0.05	All Samples
	Dichloroethane, 1,2-	0.05	< 0.05	All Samples
	Dichloropropane, 1,2-	0.05	< 0.05	All Samples
	Dichlorobenzene, 1,3-	4.8	< 0.05	All Samples
	Dichloropropene, 1,3-	0.05	< 0.05	All Samples
	Dichlorobenzene, 1,4-	0.083	< 0.05	All Samples
	Acetone	16	< 0.5	All Samples
	Bromomethane	0.05	< 0.05	All Samples
	Carbon Tetrachloride	0.05	< 0.05	All Samples
VOCs	Chlorobenzene	2.4	< 0.05	All Samples
	Chloroform	0.05	< 0.05	All Samples
	Dichloroethylene, 1,2-cis-	1.9	< 0.05	All Samples
	Dichloroethylene, 1,2-trans-	0.084	< 0.05	All Samples
	Dichlorodifluoromethane	16	< 0.05	All Samples
	Ethylene dibromide	0.05	< 0.05	All Samples
	Methyl Ethyl Ketone	16	< 0.5	All Samples
	Methyl Isobutyl Ketone	1.7	< 0.5	All Samples
	Methyl tert-Butyl Ether (MTBE)	0.75	< 0.05	All Samples
	Methylene Chloride	0.1	< 0.05	All Samples
	Hexane (n)	2.8	< 0.05	All Samples
	Styrene	0.7	< 0.05	All Samples
	Tetrachloroethylene	0.28	< 0.05	All Samples
	Trichloroethylene	0.061	< 0.05	All Samples
	Trichlorofluoromethane	4	< 0.05	All Samples
	Vinyl Chloride	0.02	< 0.02	All Samples

Table 13: Summary of Maximum Concentrations in Soil

Parameter	Standard	Maximum Concentration	Location
Methylnaphthalene, 2-(1-)	0.99	4.51	TP6
Acenaphthene	7.9	0.28	TP8
Acenaphthylene	0.15	0.11	TP6
Anthracene	0.67	0.66	TP8
Benzo(a)anthracene	0.5	1.86	TP8
Benzo(a)pyrene	0.3	1.73	TP8
Benzo(b+j)fluoranthene	0.78	2.27	TP8
Benzo(g,h,i)perylene	6.6	0.71	TP8
Benzo(k)fluoranthene	0.78	0.98	TP8
Chrysene	7	1.66	TP8
Dibenzo(a,h)anthracene	0.1	0.19	TP8
Fluoranthene	0.69	3.42	TP8
Fluorene	62	0.3	TP8
Indeno(1,2,3-cd)pyrene	0.38	0.67	TP8
Naphthalene	0.6	1.64	TP6
Phenanthrene	6.2	3.46	TP8
Pyrene	78	3.06	TP8

115

Table 14: Summary of Maximum Concentrations in Groundwater

	Parameter	Standard	Maximum Concentration	Location
	Antimony	6	0.3	BH20-3
	Arsenic	25	0.7	BH20-3
	Barium	1000	58.2	BH20-3
	Beryllium	4	< 0.007	All Samples
	Boron (total)	5000	85	BH20-3
	Cadmium	2.7	0.005	BH20-2
	Chromium Total	50	3.94	BH20-2
	Chromium VI	25	< 0.2	All Samples
	Cobalt	3.8	0.802	BH20-3
Metals and ORPs	Copper	87	3.4	BH20-2
nd 0	Cyanide (CN-)	66	< 2	All Samples
als a	Lead	10	0.6	BH20-2
Met	Mercury	0.29	< 0.01	All Samples
	Molybdenum	70	4.8	BH20-3
	Nickel	100	2.2	BH20-3
	Selenium	10	0.14	BH20-3
	Silver	1.5	< 0.05	All Samples
	Thallium	2	0.029	BH20-3
	Uranium	20	1.37	BH20-3
	Vanadium	6.2	0.53	BH20-2
	Zinc	1100	5	BH20-2
	pН	NV	7.64	BH20-2
	Benzene	5	< 0.5	All Samples
	Ethylbenzene	2.4	< 0.5	All Samples
	Toluene	24	< 0.5	All Samples
PHCs	Xylenes (Total)	300	< 0.5	All Samples
PH	F1 (C6 to C10) minus BTEX	750	<25	All Samples
	F2 (C10 to C16)	150	<100	All Samples
	F3 (C16 to C34)	500	<200	All Samples
	F4 (C34 to C50) minus PAHs	500	<200	All Samples
	Tetrachloroethane, 1,1,1,2-	1.1	< 0.5	All Samples
	Trichloroethane, 1,1,1-	200	< 0.5	All Samples

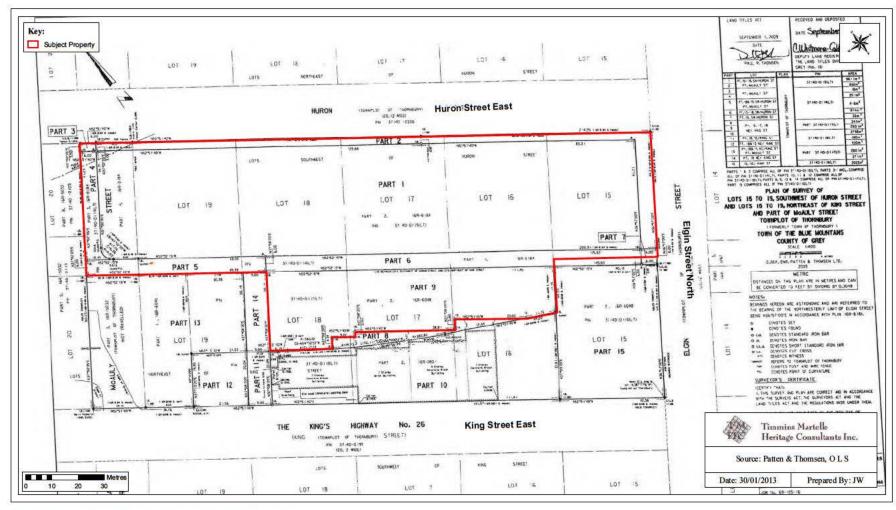
16

Table 14: Summary of Maximum Concentrations in Groundwater

	Parameter	Standard	Maximum Concentration	Location
	Tetrachloroethane, 1,1,2,2-	1	< 0.5	All Samples
	Trichloroethane, 1,1,2-	4.7	< 0.5	All Samples
	Dichloroethane, 1,1-	5	< 0.5	All Samples
	Dichloroethylene, 1,1-	1.6	< 0.5	All Samples
	Dichlorobenzene, 1,2-	3	< 0.5	All Samples
	Dichloroethane, 1,2-	1.6	< 0.5	All Samples
	Dichloropropane, 1,2-	5	< 0.5	All Samples
	Dichlorobenzene, 1,3-	59	< 0.5	All Samples
	Dichloropropene, 1,3-	0.5	< 0.5	All Samples
	Dichlorobenzene, 1,4-	1	< 0.5	All Samples
	Acetone	2700	< 30	All Samples
	Bromomethane	0.89	< 0.5	All Samples
	Carbon Tetrachloride	0.79	< 0.2	All Samples
VOCs	Chlorobenzene	30	< 0.5	All Samples
	Chloroform	2.4	< 0.5	All Samples
	Dichloroethylene, 1,2-cis-	1.6	< 0.5	All Samples
	Dichloroethylene, 1,2-trans-	1.6	< 0.5	All Samples
	Dichlorodifluoromethane	590	< 2	All Samples
	Ethylene dibromide	0.2	< 0.2	All Samples
	Methyl Ethyl Ketone	1800	< 20	All Samples
	Methyl Isobutyl Ketone	640	< 20	All Samples
	Methyl tert-Butyl Ether (MTBE)	15	< 2	All Samples
	Methylene Chloride	50	< 0.5	All Samples
	Hexane (n)	51	<1	All Samples
	Styrene	5.4	< 0.5	All Samples
	Tetrachloroethylene	1.6	< 0.5	All Samples
	Trichloroethylene	1.6	< 0.5	All Samples
	Trichlorofluoromethane	150	< 5	All Samples
	Vinyl Chloride	0.5	< 0.2	All Samples
	Methylnaphthalene, 2-(1-)	3.2	< 0.5	All Samples
	Acenaphthene	4.1	< 0.1	All Samples
	Acenaphthylene	1	< 0.1	All Samples

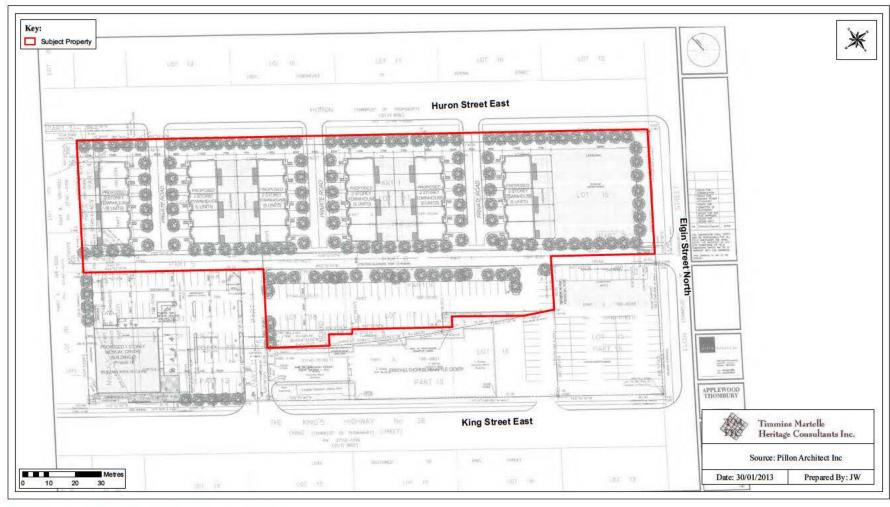
Table 14: Summary of Maximum Concentrations in Groundwater

	Parameter	Standard	Maximum Concentration	Location
	Anthracene	2.4	< 0.1	All Samples
	Benz(a)anthracene	1	< 0.1	All Samples
	Benzo(a)pyrene	0.01	< 0.01	All Samples
	Benzo(b+j)fluoranthene	0.1	< 0.1	All Samples
10	Benzo(g,h,i)perylene	0.2	< 0.2	All Samples
PAHs	Benzo(k)fluoranthene	0.1	< 0.1	All Samples
	Chrysene	0.1	< 0.1	All Samples
	Dibenz(a,h)anthracene	0.2	< 0.1	All Samples
	Fluoranthene	0.41	< 0.1	All Samples
	Fluorene	120	< 0.1	All Samples
	Indeno(1,2,3-cd)pyrene	0.2	< 0.2	All Samples
	Naphthalene	11	< 0.5	All Samples
	Phenanthrene	1	< 0.1	All Samples
	Pyrene	4.1	< 0.1	All Samples


115

Notes for Soil and Groundwater Summary Tables

	For soil and groundwater analytical results, concentration exceeds the applicable Standards.
	For soil and groundwater analytical results, laboratory detection limits exceed the applicable Standards.
BTEX	Benzene, Toluene, Ethylbenzene, Xylene
masl	Meters above sea level
MECP Table 2 RPI SCS	Generic Condition Standards in a Potable Groundwater Condition for Residential/Parkland/Institutaional Use with coarse textured soils as contained in Table 2 of the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", published by the MECP on April 15, 2011.
mbgs	Meters below ground surface
NM	Not Monitored
NA	Not Available
OCPs	Organochlorine Pesticides
PAH	Polyaromatic Hydrocarbon
PHC	Petroluem Hydrocarbon
Units	Units for all soil analyses are in µg/g (ppm) unless otherwise indicated
Units	Units for all groundwater analyses are in µg/L (ppb) unless otherwise indicated



Appendix A

Map 9: Proponent Map Defining the Subject Property- Survey Plan

Map 10: Proponent Map Defining the Subject Property- Site Plan

Appendix B

PROJECT: Phase II ESA DRILLING DATA

CLIENT: Manorwood Homes Inc. Method: Hollow Stem Augers

PROJECT LOCATION: Thornbury, Ontario Diameter: 200mm REF. NO.: 20-265-400

DATUM: Geodetic Date: Oct/01/2020 ENCL NO.: 2

BOREHOLE LOCATION:	N 4934285.098 E 543946.978
--------------------	----------------------------

DESCRIPTION	STRATA PLOT	æ		NS	WATE	S	1000	12.0	AMIC COSTANC			101	100	LIMIT	IC MOIS	TENT	LIQUID	EN.	TIL	AND
	STRA	NUMBER	TYPE	N" BLOWS	GROUND WATER	CONDITION	ELEVATION	0 U	AR ST INCONI QUICK T	F NED	+ L ×	& Sensi	VANE itivity /ANE 100	110317306	TER C	W O ONTEN	W _L IT (%)	POCKET PEN. (Cu) (kPa)	NATURAL UN (KN/m²)	GRAIN SIZ DISTRIBUTIO (%)
ossible illuvial deposit: and and gravel with cobbles, own, moist, compact	0.0	1	ss	10			186													Metals and
	0	2	SS	27		ř								0	la .	s .	8			OPRs, PA
	0 0	3	SS	20	142	***	184							o						
	0.0	4	SS	29										o						40 53 (
	0.0	5	SS	11			183		te c	39	313 3			0	in the second					
ace silt, wet	00	6	SS	14			scree 182 W. L.	- 181.9						4.5	ф					
	0.0	7	SS	12			10000	, 202	0						o					PHCs, VO
		8	SS	5			101	5 20 10 20										•		
		9	SS	3			180 cave i	n I									1	9		
15 CT (120 M		10	VANE				179					2.7		5 2		, in				
otes: 50 mm diameter monitoring well stalled upon completion Water level Readings: ate: Water Depth (mbgs)																				
	DPSOIL: 50mm DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact ace silt, wet LAYEY SILT: grey, wet, soft andy at 5.8m ND OF BOREHOLE: otes: 50 mm diameter monitoring well stalled upon completion Water level Readings: ate: Water Depth (mbgs) ct 6, 2020 4.33	DPSOIL: 50mm DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact ace silt, wet DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, own, own, own, own, own, own, own	DPSOIL: 50mm DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact 1 2 2 3 3 4 9 4 9 1 AYEY SILT: grey, wet, soft AND OF BOREHOLE: DIES: 50 mm diameter monitoring well stalled upon completion Water level Readings: ate: Water Depth (mbgs)	DPSOIL: 50mm DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact 1 SS 2 SS 2 SS 3 SS 4 SS 5 SS 6	DPSOIL: 50mm DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact 1 SS 10 2 SS 27 3 SS 20 4 SS 29 5 SS 11 6 SS 14 7 SS 12 6 SS 14 7 SS 12 7 SS 12 7 SS 3 8 SS 5 8 SS	DPSOIL: 50mm DSSIBLE ILLUVIAL DEPOSIT: Ond and gravel with cobbles, own, moist, compact 2 SS 27 2 SS 27 3 SS 20 4 SS 29 5 SS 11 acce silt, wet 6 SS 14 acce silt, wet 7 SS 12 LAYEY SILT: grey, wet, soft 8 SS 5 andy at 5.8m 9 SS 3	DPSOIL: 50mm DSSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact 1 SS 10 2 SS 27 3 SS 20 4 SS 29 5 SS 11 ace silt, wet 6 SS 14 attrated 7 SS 12 LAYEY SILT: grey, wet, soft 8 SS 5 andy at 5.8m 9 SS 3	DPSOIL: 50mm DSSIBLE ILLUVIAL DEPOSIT: Ind and gravel with cobbles, own, moist, compact 2 SS 27benton 185 2 SS 27benton 185 2 SS 29 184 2 SS 29 184 3 SS 29 184 4 SS 29 184 3 SS 20 184 4 SS 29 184 4 SS 29 185 5 SS 11 185 6 SS 14 186 187 188 180 180 180 180 180 180	Desoil: 50mm Desoi	DPSOLI: 50mm SSIBILE ILLUVIAL DEPOSIT: Indiand gravel with cobbles, own, moist, compact 2 SS 27bentonite 185 2 SS 20	DPSOLI: 50mm DSSIBLE LLUVAL DEPOSIT: Indi and gravel with cobbles, own, molst, compact 1 SS 10 186 2 SS 27	DPSOIL: 50mm DSSIBLE LLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact 1 SS 10 186 2 SS 27 -bentonite 185 2 SS 27 -bentonite 185 3 SS 20 184	DPSOILE SOmm SSIBLE ILLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact 1 SS 10 186 2 SS 27	DPSOLE Somm DSSIBLE LLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact 2 SS 27	DPSOLE Somm DSSIBLE LLUVIAL DEPOSIT: and and gravel with cobbles, own, moist, compact 1 SS 10 186 2 SS 27 -bentonite 185 2 SS 29 - o 184 4 SS 29 - o 5 SS 11 183 - o 5 SS 11 184 4 SS 29 - o 185 - sand screen 182 W. L 181.9 m Oct 06, 2020 7 SS 12 LAYEY SILT: grey, wet, soft 8 SS 5 - indy at 5.8m 10 VANE 179 NO OF BOREHOLE: oles: Ol	DPSOLE Somm SSSIBLE LILUVIAL DEPOSIT: and and graved with cobbles, own, moist, compact 1 SS 10	DPSOLE 50mm SSSIBLE LILUVIAL DEPOSIT: and and graved with cobbles, own, moist, compact 2 SS 27	Description of a grave with cobbles, own, moist, compact 2 SS 27 -bentonite -b	Description of a grave with cobbles, own, moist, compact 1 SS 10 186	Description of the property of

GRAPH NOTES

+ 3, × 3: Numbers refer to Sensitivity

○ ^{8=3%} Strain at Failure

PROJECT: Phase II ESA DRILLING DATA CLIENT: Manorwood Homes Inc. Method: Hollow Stem Augers PROJECT LOCATION: Thornbury, Ontario Diameter: 200mm REF. NO.: 20-265-400 DATUM: Geodetic Date: Oct/01/2020 ENCL NO.: 3 BOREHOLE LOCATION: N 4934254.246 E 544010.114 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE METHANE GROUND WATER CONDITIONS LIQUID POCKET PEN. (Cu) (KPa) AND 20 40 60 CONTENT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m ELEVATION SHEAR STRENGTH (kPa) DISTRIBUTION O UNCONF NED + FIELD VANE QUICK TRIAXIAL X LAB VANE DESCRIPTION NUMBER (%) WATER CONTENT (%) 40 60 80 10 20 30 GR SA SI CL TOPSOIL: 50mm 188 POSSIBLE ILLUVIAL DEPOSIT: SS 19 1 sand and gravel with cobbles, brown, moist, compact Metals and **ORPs** 185 2 SS 14 bentonite 0 PAHs loose below 1.5m 3 SS 9 0 184 7 4 SS 0 W. L. 183.3 m Oct 06, 2020 183 182.5 0 8 75 17 5 SS 3 0 CLAYEY SILT: trace sand, brownish grey, wet, soft PHCs, VOCs sand, -screen stiff @ 4.57m 181.0 SS 6 47 181 SILTY SAND: with rock fragments, wet, dense 180 179.8 cave in SAND: brown, saturated, very SS 78 179.2 END OF BOREHOLE: Notes: 1) 50 mm diameter monitoring well installed upon completion 2) Water level Readings: Date: Water Depth (mbgs) DS SOIL LOG 20-265-400.GPJ DS.GDT 11/11/20 Oct 6, 2020 2.57

PROJECT: Phase II ESA DRILLING DATA CLIENT: Manorwood Homes Inc. Method: Hollow Stem Augers PROJECT LOCATION: Thornbury, Ontario Diameter: 200mm REF. NO.: 20-265-400 DATUM: Geodetic Date: Oct/02/2020 ENCL NO.: 4 BOREHOLE LOCATION: N 4934223.603 E 544065.324 DYNAMIC CONE PENETRATION RESISTANCE PLOT SAMPLES SOIL PROFILE PLASTIC NATURAL MOISTURE METHANE GROUND WATER CONDITIONS LIQUID POCKET PEN. (Cu) (KPa) AND 40 60 CONTENT (m) STRATA PLOT GRAIN SIZE BLOWS 0.3 m ELEVATION SHEAR STRENGTH (kPa) DISTRIBUTION O UNCONF NED + FIELD VANE QUICK TRIAXIAL X LAB VANE DESCRIPTION NUMBER (%) WATER CONTENT (%) 60 80 10 20 30 GR SA SI CL TOPSOIL: 50mm 188 POSSIBLE ILLUVIAL DEPOSIT: SS 8 1 sand and gravel with cobbles, brown, moist, compact Metals and 186 **ORPs** bentonite 2 SS 30 0 PAHs CLAYEY SILT: trace sand, trace gravel, brown, moist, very stiff 185 3 SS 35 8 8 64 20 184 5 SANDY SILT: with gravel, grey, moist, very stiff 4 SS >100 184 SS >100 5 W. L. 183.5 m 0 Oct 06, 2020 -sand 183 screen 182 SS 6 >100 0 181 180.7 cave in SAND: some rock fragments, brown, wet, very dense SS >100 180.1 END OF BOREHOLE: HCs, VOCs 1) 50 mm diameter monitoring well installed upon completion 2) Water level Readings: Date: Water Depth (mbgs) Oct 6, 2020 3.30

DS SOIL LOG 20-265-400.GPJ DS.GDT 11/11/20

Appendix C

CA15940-OCT20 R1

20-265-400, Thornbury

Prepared for

DS Consultants

First Page

CLIENT DETAIL	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Drew Doak	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	drew.doak@dsconsultants.ca	SGS Reference	CA15940-OCT20
Project	20-265-400, Thornbury	Received	10/06/2020
Order Number		Approved	10/14/2020
Samples	Soil (9)	Report Number	CA15940-OCT20 R1
		Date Reported	11/11/2020

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 7 degrees C

Cooling Agent Present:Yes

Custody Seal Present:Yes

Chain of Custody Number:NA

SIGNATORIES

Brad Moore Hon. B.Sc B/ma-

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1/22

www.sgs.com

three compounds: YES

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-10
Exceedance Summary	11
QC Summary	12-20
Legend	21
Annexes	22

CA15940-OCT20 R1

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

PACKAGE: REG153 - BTEX (Se	OIL)		Sample Number	10	14	18
			Sample Name	BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
I = REG153 / SOIL / COARSE - TABLE 2 - Resi	idential/Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
STEX						
Benzene	μg/g	0.02	0.21	< 0.02	< 0.02	< 0.02
Ethylbenzene	μg/g	0.05	1.1	< 0.05	< 0.05	< 0.05
Toluene	μg/g	0.05	2.3	< 0.05	< 0.05	< 0.05
Xylene (total)	μg/g	0.05	3.1	< 0.05	< 0.05	< 0.05
m/p-xylene	μg/g	0.05		< 0.05	< 0.05	< 0.05
o-xylene	μg/g	0.05		< 0.05	< 0.05	< 0.05
WORLD BEALER II	(0.011.)		Sample Number	9	12	16
ACKAGE: REG153 - Hydrides	(SOIL)		•			
			Sample Name	BH20-1 SS2	BH20-2 SS1	BH20-3 SS1
I = REG153 / SOIL / COARSE - TABLE 2 - Resi	idential/Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
Hydrides						
Antimony	μg/g	0.8	7.5	< 0.8	< 0.8	< 0.8
Arsenic	μg/g	0.5	18	4.1	3 9	4.7
Selenium	μg/g	0.7	2.4	< 0.7	< 0.7	< 0.7

CA15940-OCT20 R1

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

ACKAGE: REG153 - Metals a	nd Inorganics		Sample Number	9	10	12	13	14	16	17	18
SOIL)											
			Sample Name	BH20-1 SS2	BH20-1 SS7	BH20-2 SS1	BH20-2 SS2	BH20-2 SS5	BH20-3 SS1	BH20-3 SS2	BH20-3 SS
= REG153 / SOIL / COARSE - TABLE 2 - Res	sidential/Parkland - UNDEFINED		Sample Matrix	Soil							
			Sample Date	05/10/2020	05/10/2020	05/10/2020	05/10/2020	05/10/2020	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result							
letals and Inorganics											
Moisture Content	%	-		3.9	16.1	15.4	5.3	19.7	13.6	5.0	12.0
Barium	μg/g	0.1	390	21		27			31		
Beryllium	μg/g	0.02	4	0.19		0.32			0.24		
Boron	μg/g	1	120	7		9			7		
Cadmium	μg/g	0.02	1.2	0.04		0.10			0.08		
Chromium	μg/g	0.5	160	8.5		13			9.9		
Cobalt	μg/g	0.01	22	3.5		6.6			4.8		
Copper	μg/g	0.1	140	12		26			20		
Lead	μg/g	0.1	120	4.2		16			5.9		
Molybdenum	μg/g	0.1	6.9	0.5		0.2			0.6		
Nickel	μg/g	0.5	100	8.3		15			11		
Silver	μg/g	0.05	20	< 0.05		0.17			< 0.05		
Thallium	μg/g	0.02	1	0.05		0.09			0.07		
Uranium	μg/g	0.002	23	0.41		0.41			0.42		
Vanadium	μg/g	3	86	9		16			11		
Zinc	μg/g	0.7	340	43		46			42		
Water Soluble Boron	μg/g	0.5	1.5	< 0.5		< 0.5			< 0.5		

CA15940-OCT20 R1

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

PACKAGE: REG153 - Metals and I	norganics		Sample Number	19		
SOIL)						
,			Sample Name	BH20-1 SS1		
L1 = REG153 / SOIL / COARSE - TABLE 2 - Residentia	al/Parkland - UNDEFINED		Sample Matrix	Soil		
			Sample Date	05/10/2020		
Parameter	Units	RL	L1	Result		
Metals and Inorganics						
Moisture Content	%	-		8.1		
			Commis Number	0	40	16
PACKAGE: REG153 - Other (ORP)	(SOIL)		Sample Number	9	12	
			Sample Name	BH20-1 SS2	BH20-2 SS1	BH20-3 SS1
1 = REG153 / SOIL / COARSE - TABLE 2 - Residentia	al/Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
Other (ORP)						
Mercury	ug/g	0.05	0.27	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio	No unit	0.2	5	0.20	0.03	0.20
SAR Calcium	mg/L	0.09		18.2	29.5	30.5
SAR Magnesium	mg/L	0.02		1.5	2.8	2.4
SAR Sodium	mg/L	0.15		3.3	0.72	4.4
Conductivity	mS/cm	0.002	0.7	0.13	0.15	0.20
рН	pH Units	0.05		8.11	7.74	7.81
Chromium VI	μg/g	0.2	8	< 0.2	< 0 2	< 0.2
Free Cyanide	μg/g	0.05	0.051	< 0.05	< 0.05	< 0.05

SGS

FINAL REPORT

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

ACKAGE: REG153 - PAHs (SOIL)			Sample Number	13	17	19
			Sample Name	BH20-2 SS2	BH20-3 SS2	BH20-1 SS1
= REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
AHs						
Acenaphthene	μg/g	0.05	7.9	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/g	0.05	0.15	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.05	0.67	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/g	0.05	0.5	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	μg/g	0.05	0.3	< 0.05	< 0.05	< 0.05
Benzo(b+j)fluoranthene	μg/g	0.05	0.78	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	μg/g	0.1	6.6	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	μg/g	0.05	0.78	< 0.05	< 0.05	< 0.05
Chrysene	μg/g	0.05	7	< 0.05	< 0.05	< 0.05
Dibenzo(a,h)anthracene	μg/g	0.06	0.1	< 0.06	< 0.06	< 0.06
Fluoranthene	μg/g	0.05	0.69	< 0.05	< 0.05	< 0.05
Fluorene	μg/g	0.05	62	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38	< 0.1	< 0.1	< 0.1
1-Methylnaphthalene	μg/g	0.05		< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/g	0.05		< 0.05	< 0.05	< 0.05
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99	< 0.05	< 0.05	< 0.05
Naphthalene	μg/g	0.05	0.6	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	0.05	6.2	< 0.05	< 0.05	< 0.05
Pyrene	μg/g	0.05	78	< 0.05	< 0.05	< 0.05

CA15940-OCT20 R1

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

ACKAGE: REG153 - PHCs (SOIL)			Sample Number	10	14	18
			Sample Name	BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Par	kland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
HCs						
F1 (C6-C10)	μg/g	10	55	< 10	< 10	< 10
F1-BTEX (C6-C10)	μg/g	10		< 10	< 10	< 10
F2 (C10-C16)	μg/g	10	98	11	< 10	20
F3 (C16-C34)	μg/g	50	300	< 50	< 50	52
F4 (C34-C50)	μg/g	50	2800	< 50	< 50	< 50
				YES	YES	YES
Chromatogram returned to baseline at	Yes / No	-		YES	TES	120
Chromatogram returned to baseline at nC50	Yes / No	-		YES	1123	
•		-	Sample Number	13	17	19
nC50		-	Sample Number Sample Name			
nC50	es (SOIL)	-	·	13	17	19
nC50 ACKAGE: REG153 - SVOC Surrogat	es (SOIL)	-	Sample Name	13 BH20-2 SS2	17 BH20-3 SS2	19 BH20-1 SS1
nC50 ACKAGE: REG153 - SVOC Surrogat	es (SOIL)	- RL	Sample Name Sample Matrix	13 BH20-2 SS2 Soil	17 BH20-3 SS2 Soil	19 BH20-1 SS1 Soil
nC50 ACKAGE: REG153 - SVOC Surrogat = REG153 / SOIL / COARSE - TABLE 2 - Residential/Par	es (SOIL)		Sample Name Sample Matrix Sample Date	13 BH20-2 SS2 Soil 05/10/2020	17 BH20-3 SS2 Soil 05/10/2020	19 BH20-1 SS1 Soil 05/10/2020
nC50 ACKAGE: REG153 - SVOC Surrogat = REG153 / SOIL / COARSE - TABLE 2 - Residential/Par Parameter	es (SOIL)		Sample Name Sample Matrix Sample Date	13 BH20-2 SS2 Soil 05/10/2020	17 BH20-3 SS2 Soil 05/10/2020	19 BH20-1 SS1 Soil 05/10/2020
nC50 ACKAGE: REG153 - SVOC Surrogat = REG153 / SOIL / COARSE - TABLE 2 - Residential/Par Parameter VOC Surrogates	es (SOIL) kland - UNDEFINED Units	RL	Sample Name Sample Matrix Sample Date	13 BH20-2 SS2 Soil 05/10/2020 Result	17 BH20-3 SS2 Soil 05/10/2020 Result	19 BH20-1 SS1 Soil 05/10/2020 Result
nC50 ACKAGE: REG153 - SVOC Surrogat = REG153 / SOIL / COARSE - TABLE 2 - Residential/Par Parameter VOC Surrogates Surr Nitrobenzene-d5	es (SOIL) kland - UNDEFINED Units Surr Rec %	RL -	Sample Name Sample Matrix Sample Date	13 BH20-2 SS2 Soil 05/10/2020 Result	17 BH20-3 SS2 Soil 05/10/2020 Result	19 BH20-1 SS1 Soil 05/10/2020 Result
nC50 ACKAGE: REG153 - SVOC Surrogat = REG153 / SOIL / COARSE - TABLE 2 - Residential/Par Parameter VOC Surrogates Surr Nitrobenzene-d5 Surr 2-Fluorobiphenyl	es (SOIL) kland - UNDEFINED Units Surr Rec % Surr Rec %	RL - -	Sample Name Sample Matrix Sample Date	13 BH20-2 SS2 Soil 05/10/2020 Result 98 89	17 BH20-3 SS2 Soil 05/10/2020 Result	19 BH20-1 SS1 Soil 05/10/2020 Result
nC50 ACKAGE: REG153 - SVOC Surrogat = REG153 / SOIL / COARSE - TABLE 2 - Residential/Par Parameter VOC Surrogates Surr Nitrobenzene-d5 Surr 2-Fluorobiphenyl Surr 4-Terphenyl-d14	es (SOIL) tkland - UNDEFINED Units Surr Rec % Surr Rec % Surr Rec %	RL	Sample Name Sample Matrix Sample Date	13 BH20-2 SS2 Soil 05/10/2020 Result 98 89 102	17 BH20-3 SS2 Soil 05/10/2020 Result 95 84 98	19 BH20-1 SS1 Soil 05/10/2020 Result 102 92 108

Client: DS Consultants

Project: 0 65 400, Thornbury

Project Manager: Drew Doak

PACKAGE: REG153 - THMs (VOC) ((SOIL)		Sample Number	10	14	18
			Sample Name	BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
.1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
THMs (VOC)						
Bromodichloromethane	hã/ã	0.05	1.5	< 0.05	< 0.05	< 0.05
Bromoform	µg/g	0.05	0.27	< 0.05	< 0.05	< 0.05
Dibromochloromethane	ha/a	0.05	2.3	< 0.05	< 0.05	< 0.05
DACKACE, DECASO , MOO O	100 (SOIL)		Sample Number	10	14	18
PACKAGE: REG153 - VOC Surrogat	es (SUIL)		Sample Name	BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
			•	Soil	Soil	Soil
_1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED	Sample Matrix Sample Date	Soii 05/10/2020	Soii 05/10/2020	Soii 05/10/2020	
Parameter	Units	RL	L1	Result	Result	Result
VOC Surrogates						
Surr 1,2-Dichloroethane-d4	Surr Rec %	-		101	101	101
Surr 4-Bromofluorobenzene	Surr Rec %	-		94	91	93
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-		91	91	90
			OI- No. 1	40	44	40
PACKAGE: REG153 - VOCs (SOIL)			Sample Number	10	14	18
			Sample Name	BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
L1 = REG153 / SOIL / COARSE - TABLE 2 - Residential/F	Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
VOCs						
Acetone	μg/g	0.5	16	< 0.5	< 0.5	< 0.5
				< 0.05	< 0.05	< 0.05
Bromomethane	μg/g	0.05	0.05	- 0.00		
Bromomethane Carbon tetrachloride	hā\ā	0.05	0.05	< 0.05	< 0.05	< 0.05

SGS FINAL REPORT

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

ACKAGE: REG153 - VOCs (SOIL)			Sample Number	10	14	18
101AGL. REG 133 - VOCS (301L)			Sample Name	BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
			Sample Natrix	Soil	Soil	Soil
REG153 / SOIL / COARSE - TABLE 2 - Residential/Parklan	nd - UNDEFINED		Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
Cs (continued)	Office	NL.	Li	Nesuit	Nesuit	Nesuit
		0.05	0.05	- 0.0F	z 0.05	- 0.0F
Chloroform	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/g	0.05	1.2	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/g	0.05	4.8	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/g	0.05	0.083	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	μg/g	0.05	16	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	μg/g	0.05	0.47	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethylene	μg/g	0.05	0.084	< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethylene	μg/g	0.05	1.9	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05
cis-1,3-dichloropropene	μg/g	0.03		< 0.03	< 0.03	< 0.03
trans-1,3-dichloropropene	μg/g	0.03		< 0.03	< 0.03	< 0.03
1,3-dichloropropene (total)	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05
Ethylenedibromide	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05
n-Hexane	μg/g	0.05	2.8	< 0.05	< 0.05	< 0.05
Methyl ethyl ketone	μg/g	0.5	16	< 0.5	< 0.5	< 0.5
Methyl isobutyl ketone	μg/g	0.5	1.7	< 0.5	< 0.5	< 0.5
Methyl-t-butyl Ether	μg/g	0.05	0.75	< 0.05	< 0.05	< 0.05
Methylene Chloride	μg/g	0.05	0.1	< 0.05	< 0.05	< 0.05
Styrene	μg/g	0.05	0.7	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	μg/g	0.05	0.28	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.058	< 0.05	< 0.05	< 0.05

CA15940-OCT20 R1

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

PACKAGE: REG153 - VOCs (SOIL	_)		Sample Number	10	14	18
			Sample Name	BH20-1 SS7	BH20-2 SS5	BH20-3 SS7
1 = REG153 / SOIL / COARSE - TABLE 2 - Residenti	ial/Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	05/10/2020	05/10/2020	05/10/2020
Parameter	Units	RL	L1	Result	Result	Result
/OCs (continued)						
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	ha/a	0.05	0.38	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	ha/a	0.05	0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	μg/g	0.05	0.061	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	μg/g	0.05	4	< 0.05	< 0.05	< 0.05
Vinyl Chloride	μg/g	0.02	0.02	< 0.02	< 0.02	< 0.02

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20201111 11 / 22

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0235-OCT20	mS/cm	0.002	<0.002	1	10	100	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5023-OCT20	μg/g	0.05	<0.05	ND	20	100	80	120	114	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL				S/Spike Blank		M	atrix Spike / Ref		
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5025-OCT20	ug/g	0.2	<0.2	9	20	88	80	120	93	75	125

20201111 12 / 22

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0049-OCT20	ug/g	0.05	<0.05	ND	20	103	80	120	102	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0035-OCT20	mg/L	0.09	<0.09	6	20	98	80	120	98	70	130
SAR Magnesium	ESG0035-OCT20	mg/L	0.02	<0.02	12	20	97	80	120	101	70	130
SAR Sodium	ESG0035-OCT20	mg/L	0.15	<0.15	9	20	97	80	120	98	70	130

20201111 13 / 22

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver	EMS0049-OCT20	ug/g	0.05	<0.05	ND	20	97	70	130	106	70	130
Arsenic	EMS0049-OCT20	μg/g	0.5	<0.5	2	20	103	70	130	106	70	130
Barium	EMS0049-OCT20	ug/g	0.1	<0.1	1	20	104	70	130	95	70	130
Beryllium	EMS0049-OCT20	μg/g	0.02	<0.02	3	20	104	70	130	108	70	130
Boron	EMS0049-OCT20	μg/g	1	<1	3	20	108	70	130	105	70	130
Cadmium	EMS0049-OCT20	μg/g	0.02	<0.02	17	20	104	70	130	110	70	130
Cobalt	EMS0049-OCT20	μg/g	0.01	<0.01	2	20	105	70	130	118	70	130
Chromium	EMS0049-OCT20	μg/g	0.5	<0.5	4	20	106	70	130	116	70	130
Copper	EMS0049-OCT20	μg/g	0.1	<0.1	1	20	108	70	130	117	70	130
Molybdenum	EMS0049-OCT20	μg/g	0.1	<0.1	6	20	91	70	130	102	70	130
Nickel	EMS0049-OCT20	ug/g	0.5	<0.5	2	20	103	70	130	118	70	130
Lead	EMS0049-OCT20	ug/g	0.1	<0.1	3	20	109	70	130	113	70	130
Antimony	EMS0049-OCT20	μg/g	0.8	<0.8	ND	20	104	70	130	94	70	130
Selenium	EMS0049-OCT20	μg/g	0.7	<0.7	ND	20	104	70	130	104	70	130
Thallium	EMS0049-OCT20	μg/g	0.02	<0.02	1	20	103	70	130	106	70	130
Uranium	EMS0049-OCT20	μg/g	0.002	<0.002	4	20	97	70	130	105	70	130
Vanadium	EMS0049-OCT20	μg/g	3	<3	1	20	105	70	130	109	70	130
Zinc	EMS0049-OCT20	μg/g	0.7	<0.7	2	20	101	70	130	107	70	130

20201111 14 / 22

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0116-OCT20	μg/g	10	<10	ND	30	88	80	120	89	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0176-OCT20	μg/g	10	<10	ND	30	108	80	120	111	60	140
F3 (C16-C34)	GCM0176-OCT20	μg/g	50	<50	ND	30	108	80	120	111	60	140
F4 (C34-C50)	GCM0176-OCT20	µg/g	50	<50	ND	30	108	80	120	111	60	140

20201111 15 / 22

CA15940-OCT20 R1

QC SUMMARY

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate LCS/S		S/Spike Blank		м	atrix Spike / Re	f.	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0021-OCT20	pH Units	0.05		0	20	100	80	120			

20201111 16 / 22

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits 6)	Spike Recovery		ery Limits %)
						(%)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	82	50	140	97	50	140
2-Methylnaphthalene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	78	50	140	93	50	140
Acenaphthene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	88	50	140	106	50	140
Acenaphthylene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	83	50	140	103	50	140
Anthracene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	84	50	140	103	50	140
Benzo(a)anthracene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	85	50	140	109	50	140
Benzo(a)pyrene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	83	50	140	109	50	140
Benzo(b+j)fluoranthene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	79	50	140	107	50	140
Benzo(ghi)perylene	GCM0173-OCT20	μg/g	0.1	< 0.1	ND	40	81	50	140	104	50	140
Benzo(k)fluoranthene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	80	50	140	95	50	140
Chrysene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	86	50	140	101	50	140
Dibenzo(a,h)anthracene	GCM0173-OCT20	μg/g	0.06	< 0.06	ND	40	79	50	140	103	50	140
Fluoranthene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	88	50	140	108	50	140
Fluorene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	85	50	140	106	50	140
Indeno(1,2,3-cd)pyrene	GCM0173-OCT20	μg/g	0.1	< 0.1	ND	40	80	50	140	102	50	140
Naphthalene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	86	50	140	103	50	140
Phenanthrene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	86	50	140	103	50	140
Pyrene	GCM0173-OCT20	μg/g	0.05	< 0.05	ND	40	91	50	140	113	50	140

20201111 17 / 22

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	105	60	130	98	50	140
1,1,1-Trichloroethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	98	60	130	96	50	140
1,1,2,2-Tetrachloroethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	108	60	130	76	50	140
1,1,2-Trichloroethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	100	60	130	98	50	140
1,1-Dichloroethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	85	60	130	126	50	140
1,1-Dichloroethylene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	92	60	130	100	50	140
1,2-Dichlorobenzene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	105	60	130	97	50	140
1,2-Dichloroethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	96	60	130	95	50	140
1,2-Dichloropropane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	98	60	130	96	50	140
1,3-Dichlorobenzene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	105	60	130	98	50	140
1,4-Dichlorobenzene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	106	60	130	98	50	140
Acetone	GCM0115-OCT20	μg/g	0.5	< 0.5	ND	50	85	50	140	102	50	140
Benzene	GCM0115-OCT20	μg/g	0.02	< 0.02	ND	50	96	60	130	98	50	140
Bromodichloromethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	98	60	130	95	50	140
Bromoform	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	103	60	130	94	50	140
Bromomethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	90	50	140	83	50	140
Carbon tetrachloride	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	97	60	130	96	50	140
Chlorobenzene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	103	60	130	96	50	140
Chloroform	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	97	60	130	96	50	140
cis-1,2-Dichloroethylene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	99	60	130	95	50	140

20201111 18 / 22

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch Reference	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
					RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits	
								Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0115-OCT20	μg/g	0.03	< 0.03	ND	50	101	60	130	93	50	140
Dibromochloromethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	99	60	130	95	50	140
Dichlorodifluoromethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	85	50	140	83	50	140
Ethylbenzene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	104	60	130	97	50	140
Ethylenedibromide	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	101	60	130	97	50	140
n-Hexane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	110	60	130	104	50	140
m/p-xylene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	102	60	130	95	50	140
Methyl ethyl ketone	GCM0115-OCT20	μg/g	0.5	< 0.5	ND	50	94	50	140	96	50	140
Methyl isobutyl ketone	GCM0115-OCT20	μg/g	0.5	< 0.5	ND	50	97	50	140	96	50	140
Methyl-t-butyl Ether	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	99	60	130	100	50	140
Methylene Chloride	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	103	60	130	100	50	140
o-xylene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	106	60	130	99	50	140
Styrene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	104	60	130	96	50	140
Tetrachloroethylene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	99	60	130	96	50	140
Toluene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	98	60	130	96	50	140
trans-1,2-Dichloroethylene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	101	60	130	100	50	140
trans-1,3-dichloropropene	GCM0115-OCT20	μg/g	0.03	< 0.03	ND	50	104	60	130	97	50	140
Trichloroethylene	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	95	60	130	111	50	140
Trichlorofluoromethane	GCM0115-OCT20	μg/g	0.05	< 0.05	ND	50	94	50	140	99	50	140
Vinyl Chloride	GCM0115-OCT20	μg/g	0.02	< 0.02	ND	50	91	50	140	88	50	140

20201111 19 / 22

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duplicate LCS/Spike Blank			Matrix Spike / Ref.				
	Reference			Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0024-OCT20	μg/g	0.5	<0.5	ND	20	100	80	120	110	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20 / 22

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20201111 21 / 22

Request for Laboratory Services and CHAIN OF CUSTODY

Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Claberatory Information Section - Lab use only Sheard Received By (signature): Received Date: 10 / 06 / 20 (mm/dd/yy) Cooling Agent Present: Yes No Custody Seal Present: Yes No Received Time: 14: 15 (hr: min) Yes No Temperature Upon Receipt (°C) Custody Seal Intact: REPORT INFORMATION INVOICE INFORMATION Company: DS Consultants Quotation #: P.O. #: (same as Report Information) Project #: 20-265-400 Site Location/ID: Thombury Contact: Drew Doak Company: DS Consultants Contact: Accounting TURNAROUND TIME (TAT) REQUIRED Address: 6221 Hwy 7, Unit 16, Vaughan TAT's are quoted in business days (exclude statutory holidays & weekends). Regular TAT (5-7days) Samples received after 6pm or on weekends: TAT begins next business day Address: 905-264-9393 1 Day 2 Days 3 Days 4 Days RUSH TAT (Additional Charges May Apply): Phone: PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Fax: NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED Specify Due Date: WITH SGS DRINKING WATER CHAIN OF CUSTODY drew.doak@dsconsultants.ca Email: Email: **ANALYSIS REQUESTED** REGULATIONS SVOC PCB PHC VOC Pest TCLP M & I Other (please specify) Other Regulations: Sewer By-Law: Regulation 153/04: ✓ Res/Park Reg 347/558 (3 Day min TAT) Sanitary Table 1 Soil Texture: Table 2 ☐ PWQO ☐ MMER Storm ☐ Ind/Com ✓ Coarse TCLP Table 3 Agri/Other Medium CCME Other: tests Municipality: Metals & Inorganics ind Crvi, CN, Hg pH. (B(HWS), EC, SAR (CI, Na-water) Table Fine ☐ MISA □_{M&I} Filtered (Y/N) Suite COMMENTS: RECORD OF SITE CONDITION (RSC) YES □ NO Dvoc ICP Metals only + BTEX PCB Total Sewer Use: Pesticides PAHs only TIME #OF DATE VOCS MATRIX SAMPLE IDENTIFICATION SAMPLED BOTTLES PCBs SAMPLED F1-F4 Field S BH20-1 SS2 Oct 5, 2020 5PM 2 S 5PM 3 BH20-1 SS7 Oct 5, 2020 S On Hold 3 BH20-1 SS9 Oct 5, 2020 5PM Oct 5, 2020 5PM 1 S 4 BH20-2 SS1 S 5 BH20-2 SS2 5PM 1 Oct 5, 2020 3 S 6 BH20-2 SS5 Oct 5, 2020 5PM On Hold 5PM 3 S 7 BH20-2 SS7 Oct 5, 2020 5PM 1 S 8 BH20-3 SS1 Oct 5, 2020 1 S 5PM 9 BH20-3 SS2 Oct 5, 2020 S 10 BH20-3 SS7 Oct 5, 2020 5PM 3 12 Observations/Comments/Special Instructions Sampled By (NAME): Matt Z Signature: (mm/dd/yy) Pink Copy - Client Date: Date: 10 Signature: Drew Doak Code 2020 to 06 14 26 28 ,20 ,06 Relinquished by (NAME): Drew Doak

Revision # 1.2 Date of Issue 09 Sept, 2010 Note: Submission of samples to SGS is acknowledgement that you have been provided direction on sample collection/handling and transportation of samples. (2) Submission of samples to SGS is considered authorization for completion of work. Signatures may appear on this form or be retained on file in the contract, or in an alternative format (e.g. shipping documents). (3) Results may be sent by email to an unlimited number of addresses for no additional cost. Fax is available upon request. This document is issued by the Company under its General Conditions of Service accessible at http://www.sps.com/terms_and_conditions.htm. (Printed copies are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

CA14932-OCT20 R

20-265-400, Thornbury

Prepared for

DS Consultants

First Page

CLIENT DETAIL	S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Drew Doak	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	drew.doak@dsconsultants.ca	SGS Reference	CA14932-OCT20
Project	20-265-400, Thornbury	Received	10/30/2020
Order Number		Approved	11/09/2020
Samples	Soil (11)	Report Number	CA14932-OCT20 R
		Date Reported	11/09/2020

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 4 degrees C

Cooling Agent Present:Yes

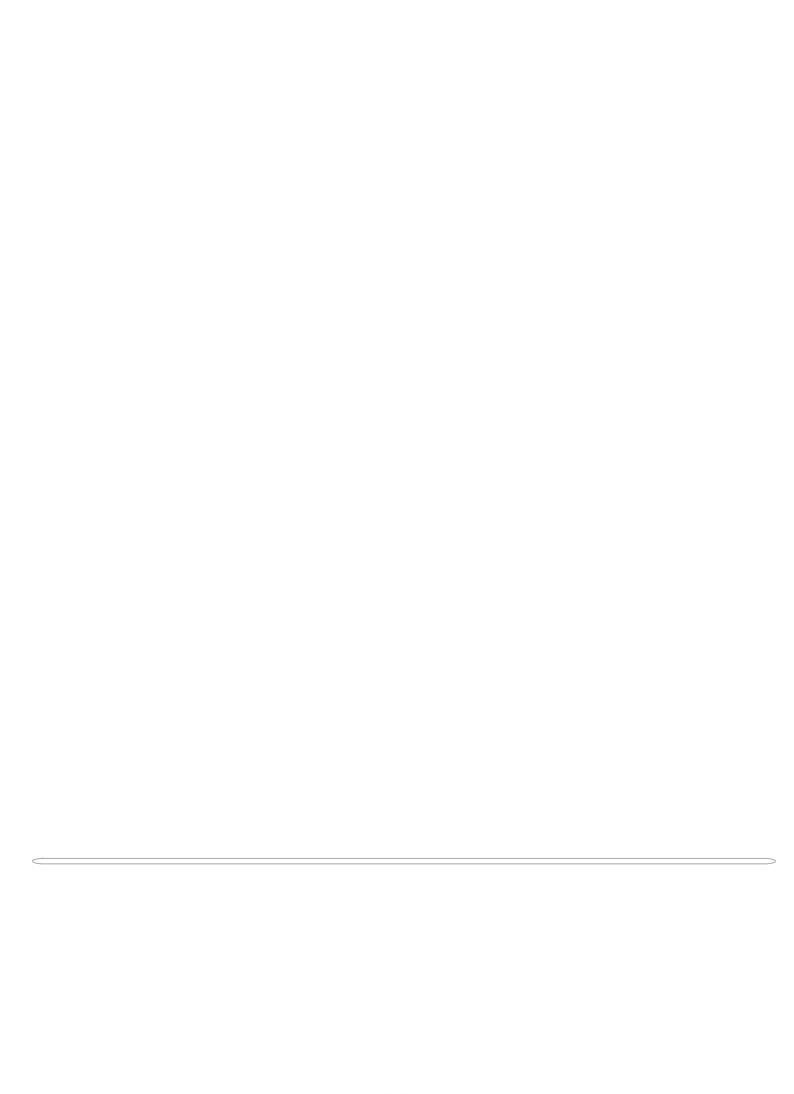
Custody Seal Present:Yes

Chain of Custody Number:010840

QC Batch GCM78-NOV20: Benzo(a)anthracene, Chrysene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-c,d)pyrene, Dibenzo(a,h)anthracene,

2-Methylnaphthalene and 1-Methylnaphthalene: Duplicate; RPD falls outside of the method criteria due to sample heterogeneity.

SIGNATORIES


Brad Moore Hon. B.Sc Brad Mo

t 705-652-2143 f 705-652-6365 SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

1 / 24

three compounds: YES

Member of the SGS Group (SGS SA)

TABLE OF CONTENTS

First Page	1-2
Index	3
Results	4-11
Exceedance Summary	12
QC Summary	13-22
Legend	23
Annexes	24

CA14932-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

ACKAGE: REG153 - BTEX (SOIL)			Sample Number	14	15	16	18	19		
			Sample Name	TP3-2	TP5	TP6	TP7	TP8		
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parklan	d - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil		
			Sample Date	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020		
Parameter	Units	RL	L1	Result	Result	Result	Result	Result		
TEX										
Benzene	μg/g	0.02	0.21	< 0.02	< 0.02	0.07	< 0.02	< 0.02		
Ethylbenzene	μg/g	0.05	1.1	< 0.05	< 0.05	0.17	< 0.05	< 0.05		
Toluene	μg/g	0.05	2.3	< 0.05	< 0.05	0.51	0.06	< 0.05		
Xylene (total)	μg/g	0.05	3.1	< 0.05	< 0.05	1.25	< 0.05	< 0.05		
m/p-xylene	μg/g	0.05		< 0.05	< 0.05	0.59	0.05	< 0.05		
o-xylene	μg/g	0.05		< 0.05	< 0.05	0.66	< 0.05	< 0.05		
ACKAGE: REG153 - Hydrides (SOIL)			Sample Number	14	15	16	17	18	19	
			Sample Name	TP3-2	TP5	TP6	TP6 Dup2	TP7	TP8	
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parklan	d - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil	
			Sample Date	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020	
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result	
lydrides										
Antimony	μg/g	0.8	7.5	< 0.8	< 0.8	0.9	0.9	< 0.8	< 0.8	
Arsenic	μg/g	0.5	18	4.4	2 9	9.5	9.2	16	4.0	

CA14932-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

ACKAGE: REG153 - Metals and Inorgan	ics		Sample Number	9	10	11	12	13	14	15	16
SOIL)											
			Sample Name	TP1A	TP1B	TP3A	TP3B	TP3A Dup1	TP3-2	TP5	TP6
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland	- UNDEFINED		Sample Matrix Sample Date	Soil 29/10/2020							
Parameter	Units	RL	L1	Result							
etals and Inorganics											
Moisture Content	%	-		5.7	5 9	9.3	12.4	10.2	12.9	10 2	10.3
Barium	µg/g	0.1	390						35	26	61
Beryllium	μg/g	0.02	4						0.30	0.30	0.40
Boron	μg/g	1	120						8	9	9
Cadmium	µg/g	0.02	1.2						0.14	0.04	0.51
Chromium	μg/g	0.5	160						11	11	12
Cobalt	μg/g	0.01	22						5.5	5.1	5.6
Copper	μg/g	0.1	140						24	17	60
Lead	μg/g	0.1	120						23	6.6	170
Molybdenum	μg/g	0.1	6.9						0.4	0.2	1.2
Nickel	μg/g	0.5	100						13	11	16
Silver	μg/g	0.05	20						0.07	< 0.05	0.13
Thallium	μg/g	0.02	1						0.09	0.08	0.22
Uranium	μg/g	0.002	23						0.50	0.45	0.56
Vanadium	μg/g	3	86						14	14	17
Zinc	μg/g	0.7	340						64	40	190
Water Soluble Boron	μg/g	0.5	1.5						< 0.5	< 0.5	< 0.5

CA14932-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

PACKAGE: REG153 - Metals and	Inorganics		Sample Number	17	18	19
OIL)	morganio		·			
- :,			Sample Name	TP6 Dup2	TP7	TP8
= REG153 / SOIL / COARSE - TABLE 2 - Resident	tial/Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil
			Sample Date	29/10/2020	29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result	Result	Result
letals and Inorganics						
Moisture Content	%	-		9.9	15.4	13.4
Barium	μg/g	0.1	390	58	50	36
Beryllium	μg/g	0.02	4	0.37	0.26	0.27
Boron	μg/g	1	120	9	7	8
Cadmium	μg/g	0.02	1.2	0.50	0.34	0.15
Chromium	μg/g	0.5	160	11	12	12
Cobalt	μg/g	0.01	22	5.2	4.6	5.6
Copper	μg/g	0.1	140	59	31	30
Lead	μg/g	0.1	120	160	170	25
Molybdenum	μg/g	0.1	6.9	1.2	0 5	0.4
Nickel	μg/g	0.5	100	17	11	13
Silver	μg/g	0.05	20	0.12	0.12	0.07
Thallium	μg/g	0.02	1	0.21	0.10	0.09
Uranium	μg/g	0.002	23	0.58	0.49	0.39
Vanadium	μg/g	3	86	17	15	17
Zinc	μg/g	0.7	340	180	200	88
Water Soluble Boron	μg/g	0.5	1.5	< 0.5	< 0.5	< 0.5

CA14932-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

PACKAGE: REG153 - Other (ORP	P) (SOIL)		Sample Number	14	15	16	17	18	19
			Sample Name	TP3-2	TP5	TP6	TP6 Dup2	TP7	TP8
= REG153 / SOIL / COARSE - TABLE 2 - Resident	itial/Parkland - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil	Soil
			Sample Date	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result	Result	Result	Result	Result	Result
ther (ORP)									
Mercury	ug/g	0.05	0.27	< 0.05	< 0.05	0.35	0.36	0.15	< 0.05
Sodium Adsorption Ratio	No unit	0.2	5	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2
SAR Calcium	mg/L	0.09		26.3	25.3	27.3	35.2	39.1	32.9
SAR Magnesium	mg/L	0.02		2.8	3 2	2.7	3.7	4.7	3.9
SAR Sodium	mg/L	0.15		1.1	0.99	0.95	1.0	5.2	1.9
Conductivity	mS/cm	0.002	0.7	0.14	0.14	0.20	0.19	0.27	0.21
рН	pH Units	0.05		7.08	7.52	7.64	7.61	7.66	7.58
Chromium VI	μg/g	0.2	8	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Free Cyanide	μg/g	0.05	0.051	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

ACKAGE: REG153 - PAHs (SOIL)			Sample Number	9	10	11	12	13	14	15	16
			Sample Name	TP1A	TP1B	TP3A	TP3B	TP3A Dup1	TP3-2	TP5	TP6
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parkland - U	INDEFINED		Sample Matrix	Soil							
			Sample Date	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result							
AHs											
Acenaphthene	μg/g	0.05	7.9	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	< 0.05	0.08
Acenaphthylene	μg/g	0.05	0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.11
Anthracene	μg/g	0.05	0.67	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.10	< 0.05	0.20
Benzo(a)anthracene	μg/g	0.05	0.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.30	< 0.05	0.80
Benzo(a)pyrene	μg/g	0.05	0.3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.30	< 0.05	0.94
Benzo(b+j)fluoranthene	μg/g	0.05	0.78	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.43	< 0.05	1.49
Benzo(ghi)perylene	μg/g	0.1	6.6	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.22	< 0.1	0.55
Benzo(k)fluoranthene	μg/g	0.05	0.78	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.16	< 0.05	0.43
Chrysene	μg/g	0.05	7	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.31	< 0.05	0.91
Dibenzo(a,h)anthracene	μg/g	0.06	0.1	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	0.12
Fluoranthene	μg/g	0.05	0.69	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.73	< 0.05	1.57
Fluorene	μg/g	0.05	62	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	< 0.05	0.07
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.18	< 0.1	0.43
1-Methylnaphthalene	μg/g	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	1.97
2-Methylnaphthalene	μg/g	0.05		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	< 0.05	2.53
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.10	< 0.05	4.51
Naphthalene	μg/g	0.05	0.6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.08	< 0.05	1.64
Phenanthrene	μg/g	0.05	6.2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.68	< 0.05	1.45
Pyrene	μg/g	0.05	78	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.57	< 0.05	1.31

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

PACKAGE: REG153 - PAHs (SOIL)			Sample Number	18	19
, ,			Sample Name	TP7	TP8
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Pa	arkland - UNDEFINED		Sample Matrix	Soil	Soil
			Sample Date	29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result	Result
AHs					
Acenaphthene	μg/g	0.05	7.9	0.20	0.28
Acenaphthylene	μg/g	0.05	0.15	0.11	< 0.05
Anthracene	μg/g	0.05	0.67	0.44	0.66
Benzo(a)anthracene	μg/g	0.05	0.5	1.19	1.86
Benzo(a)pyrene	μg/g	0.05	0.3	1.15	1.73
Benzo(b+j)fluoranthene	μg/g	0.05	0.78	1.75	2.27
Benzo(ghi)perylene	μg/g	0.1	6.6	0.48	0.71
Benzo(k)fluoranthene	μg/g	0.05	0.78	0.49	0.98
Chrysene	μg/g	0.05	7	1.10	1.66
Dibenzo(a,h)anthracene	μg/g	0.06	0.1	0.12	0.19
Fluoranthene	μg/g	0.05	0.69	2.52	3.42
Fluorene	μg/g	0.05	62	0.24	0.30
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38	0.42	0.67
1-Methylnaphthalene	μg/g	0.05		0.40	0.10
2-Methylnaphthalene	μg/g	0.05		0.45	0.11
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99	0.85	0.21
Naphthalene	μg/g	0.05	0.6	0.39	0.15
Phenanthrene	μg/g	0.05	6.2	2.24	3.46
Pyrene	μg/g	0.05	78	2.12	3.06

CA14932-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

ACKAGE: REG153 - PHCs (SOIL)			Sample Number	14	15	16	18	19			
` ,			Sample Name	TP3-2	TP5	TP6	TP7	TP8			
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parl	kland - UNDEFINED		Sample Matrix	Soil	Soil	Soil	Soil	Soil			
			Sample Date	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020			
Parameter	Units	RL	L1	Result	Result	Result	Result	Result			
HCs											
F1 (C6-C10)	μg/g	10	55	< 10	< 10	21	< 10	< 10			
F1-BTEX (C6-C10)	μg/g	10		< 10	< 10	19	< 10	< 10			
F2 (C10-C16)	μg/g	10	98	< 10	< 10	20	< 10	< 10			
F3 (C16-C34)	μg/g	50	300	51	< 50	157	194	81			
F4 (C34-C50)	μg/g	50	2800	< 50	< 50	125	251	55			
F4G-sg (GHH)	μg/g	200	2800				940				
Chromatogram returned to baseline at nC50	Yes / No	-		YES	YES	YES	NO	YES			
ACKAGE: REG153 - SVOC Surrogate	es (SOIL)		Sample Number	9	10	11	12	13	14	15	16
ACKAGE: REG153 - SVOC Surrogate	es (SOIL)		Sample Number Sample Name	9 TP1A	10 TP1B	11 TP3A	12 TP3B	13 TP3A Dup1	14 TP3-2	15 TP5	16 TP6
•	, ,		•								
•	, ,		Sample Name	TP1A	TP1B	TP3A	TP3B	TP3A Dup1	TP3-2	TP5	TP6
ACKAGE: REG153 - SVOC Surrogate = REG153 / SOIL / COARSE - TABLE 2 - Residential/Part Parameter	, ,	RL	Sample Name Sample Matrix	TP1A Soil	TP1B Soil	TP3A Soil	TP3B Soil	TP3A Dup1 Soil	TP3-2 Soil	TP5 Soil	TP6 Soil
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parl	kland - UNDEFINED	RL	Sample Name Sample Matrix Sample Date	TP1A Soil 29/10/2020	TP1B Soil 29/10/2020	TP3A Soil 29/10/2020	TP3B Soil 29/10/2020	TP3A Dup1 Soil 29/10/2020	TP3-2 Soil 29/10/2020	TP5 Soil 29/10/2020	TP6 Soil 29/10/2020
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Pari	kland - UNDEFINED	RL -	Sample Name Sample Matrix Sample Date	TP1A Soil 29/10/2020	TP1B Soil 29/10/2020	TP3A Soil 29/10/2020	TP3B Soil 29/10/2020	TP3A Dup1 Soil 29/10/2020	TP3-2 Soil 29/10/2020	TP5 Soil 29/10/2020	TP6 Soil 29/10/2020
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parl Parameter VOC Surrogates	kland - UNDEFINED Units		Sample Name Sample Matrix Sample Date	TP1A Soil 29/10/2020 Result	TP1B Soil 29/10/2020 Result	TP3A Soil 29/10/2020 Result	TP3B	TP3A Dup1 Soil 29/10/2020 Result	TP3-2 Soil 29/10/2020 Result	TP5 Soil 29/10/2020 Result	TP6 Soil 29/10/2020 Result
= REG153 / SOIL / COARSE - TABLE 2 - Residential/Parl Parameter /OC Surrogates Surr Nitrobenzene-d5	kland - UNDEFINED Units Surr Rec %	-	Sample Name Sample Matrix Sample Date	TP1A Soil 29/10/2020 Result	TP1B	TP3A	TP3B	TP3A Dup1 Soil 29/10/2020 Result	TP3-2 Soil 29/10/2020 Result	TP5	TP6 Soil 29/10/2020 Result
Parameter OC Surrogates Surr Nitrobenzene-d5 Surr 2-Fluorobiphenyl	Units Surr Rec % Surr Rec %	-	Sample Name Sample Matrix Sample Date	TP1A Soil 29/10/2020 Result 67 113	TP1B	TP3A	TP3B	TP3A Dup1 Soil 29/10/2020 Result 66 100	TP3-2 Soil 29/10/2020 Result 74 73	TP5 Soil 29/10/2020 Result 67 99	TP6 Soil 29/10/2020 Result 67 107
Parameter /OC Surrogates Surr Nitrobenzene-d5 Surr 2-Fluorobiphenyl Surr 4-Terphenyl-d14	Units Surr Rec % Surr Rec % Surr Rec %		Sample Name Sample Matrix Sample Date	TP1A Soil 29/10/2020 Result 67 113 105	TP1B	TP3A	TP3B	TP3A Dup1 Soil 29/10/2020 Result 66 100 94	TP3-2 Soil 29/10/2020 Result 74 73 82	TP5 Soil 29/10/2020 Result 67 99 99	TP6 Soil 29/10/2020 Result 67 107

CA14932-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury

Project Manager: Drew Doak

PACKAGE: REG153 - SVOC S u	rrogates (SOIL)		Sample Number	18	19
			Sample Name	TP7	TP8
_1 = REG153 / SOIL / COARSE - TABLE 2 - Resid	dential/Parkland - UNDEFINED		Sample Matrix	Soil	Soil
			Sample Date	29/10/2020	29/10/2020
Parameter	Units	RL	L1	Result	Result
SVOC Surrogates					
Surr Nitrobenzene-d5	Surr Rec %	-		69	75
Surr 2-Fluorobiphenyl	Surr Rec %	-		102	99
Surr 4-Terphenyl-d14	Surr Rec %	-		102	87
Surr 2-Fluorophenol	Surr Rec %	-		90	93
Surr Phenol-d6	Surr Rec %	-		84	88
Surr 2,4,6-Tribromophenol	Surr Rec %	-		81	78

EXCEEDANCE SUMMARY

REG153 / SOIL / **COARSE - TABLE** 2 -Residential/Parklan d - UNDEFINED Method Units Parameter Result L1 **TP3-2** Fluoranthene EPA 3541/8270D μg/g 0.73 TP6 Lead EPA 3050/EPA 200.8 μg/g 170 2-and 1-methyl Naphthalene EPA 3541/8270D 4.51 μg/g Benz(a)anthracene EPA 3541/8270D 0.80 μg/g Benzo(a)pyrene EPA 3541/8270D μg/g 0.94 EPA 3541/ 270D Benzo(b+j)fluoranthene 1 49 μg/g Dibenz(a,h)anthracene EPA 3541/8270D μg/g 0.12 Fluoranthene EPA 3541/8270D 1.57 μg/g Indeno(1,2,3-cd)pyrene EPA 3541/8270D 0.43 μg/g Naphthalene EPA 3541/8270D 1.64 μg/g Mercury EPA 7471A/EPA 245 0.35 0.27 μg/g TP6 Dup2 Lead EPA 3050/EPA 00 160 μg/g EPA 7471A/EPA 245 0.36 Mercury μg/g TP7 Lead EPA 3050/EPA 200.8 μg/g 170 Benz(a)anthracene EPA 3541/8270D 1.19 μg/g Benzo(a)pyrene EPA 3541/8270D 1.15 μg/g Benzo(b+j)fluoranthene EPA 3541/8270D 1.75 μg/g Dibenz(a,h)anthracene EPA 3541/ 270D 0 1 μg/g Fluoranthene EPA 3541/8270D 2.52 μg/g

TP8

Indeno(1,2,3-cd)pyrene

Benz(a)anthracene	EPA 3541/8270D	hā\ā	1.86	0.5
Benzo(a)pyrene	EPA 3541/8270D	μg/g	1.73	0.3
Benzo(b+j)fluoranthene	EPA 3541/8270D	μg/g	2.27	0.78
Benzo(k)fluoranthene	EPA 3541/ 270D	μg/g	0 9	0.78
Dibenz(a,h)anthracene	EPA 3541/8270D	μg/g	0.19	0.1
Fluoranthene	EPA 3541/8270D	μg/g	3.42	0.69
Indeno(1,2,3-cd)pyrene	EPA 3541/8270D	μg/g	0.67	0.38

μg/g

0.42

EPA 3541/8270D

20201109 12 / 24

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	CS/Spike Blank		Matrix Spike / Re		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	•
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0091-NOV20	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	Duplicate LCS/S		CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD AC Spike (%) F		•		Recovery Limits			
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5004-NOV20	μg/g	0.05	<0.05	ND	20	99	80	120	83	75	125
Free Cyanide	SKA5011-NOV20	μg/g	0.05	<0.05	ND	20	92	80	120	89	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	Units RL	Method	Duj	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5014-NOV20	ug/g	0.2	<0.2	ND	20	88	80	120	93	75	125

20201109 13 / 24

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	ī.
	Reference	Reference		Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0010-NOV20	ug/g	0.05	<0.05	ND	20	104	80	120	89	70	130
Mercury	EMS0035-NOV20	ug/g	0.05	<0.05	ND	20	109	80	120	94	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		м	latrix Spike / Ref	f.
	Reference			Blank	RPD	AC	Spike	Recove	ry Limits %)	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0019-NOV20	mg/L	0.09	<0.09	16	20	96	80	120	106	70	130
SAR Magnesium	ESG0019-NOV20	mg/L	0.02	<0.02	3	20	94	80	120	106	70	130
SAR Sodium	ESG0019-NOV20	mg/L	0.15	<0.15	9	20	92	80	120	106	70	130

20201109 14 / 24

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	1.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						((%)	Low	High	(%)	Low	High
Silver	EMS0010-NOV20	ug/g	0.05	<0.05	ND	20	106	70	130	91	70	130
Arsenic	EMS0010-NOV20	μg/g	0.5	<0.5	0	20	102	70	130	98	70	130
Barium	EMS0010-NOV20	ug/g	0.1	<0.1	1	20	106	70	130	91	70	130
Beryllium	EMS0010-NOV20	μg/g	0.02	<0.02	2	20	102	70	130	107	70	130
Boron	EMS0010-NOV20	μg/g	1	<1	3	20	99	70	130	100	70	130
Cadmium	EMS0010-NOV20	μg/g	0.02	<0.02	6	20	101	70	130	92	70	130
Cobalt	EMS0010-NOV20	μg/g	0.01	<0.01	1	20	104	70	130	100	70	130
Chromium	EMS0010-NOV20	μg/g	0.5	<0.5	2	20	108	70	130	104	70	130
Copper	EMS0010-NOV20	μg/g	0.1	<0.1	3	20	106	70	130	95	70	130
Molybdenum	EMS0010-NOV20	μg/g	0.1	<0.1	7	20	95	70	130	93	70	130
Nickel	EMS0010-NOV20	ug/g	0.5	<0.5	1	20	102	70	130	97	70	130
Lead	EMS0010-NOV20	ug/g	0.1	<0.1	3	20	108	70	130	96	70	130
Antimony	EMS0010-NOV20	μg/g	0.8	<0.8	ND	20	93	70	130	92	70	130
Selenium	EMS0010-NOV20	μg/g	0.7	<0.7	ND	20	101	70	130	94	70	130
Thallium	EMS0010-NOV20	μg/g	0.02	<0.02	8	20	108	70	130	101	70	130
Uranium	EMS0010-NOV20	μg/g	0.002	<0.002	4	20	100	70	130	102	70	130
Vanadium	EMS0010-NOV20	μg/g	3	<3	2	20	105	70	130	99	70	130
Zinc	EMS0010-NOV20	μg/g	0.7	<0.7	1	20	106	70	130	93	70	130
Silver	EMS0035-NOV20	ug/g	0.05	<0.05	4	20	97	70	130	91	70	130
Arsenic	EMS0035-NOV20	μg/g	0.5	<0.5	1	20	105	70	130	93	70	130

20201109 15 / 24

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS (continued)

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Barium	EMS0035-NOV20	ug/g	0.1	<0.1	1	20	104	70	130	110	70	130
Beryllium	EMS0035-NOV20	μg/g	0.02	<0.02	3	20	99	70	130	103	70	130
Boron	EMS0035-NOV20	μg/g	1	<1	2	20	109	70	130	106	70	130
Cadmium	EMS0035-NOV20	μg/g	0.02	<0.02	6	20	99	70	130	103	70	130
Cobalt	EMS0035-NOV20	µg/g	0.01	<0.01	1	20	102	70	130	100	70	130
Chromium	EMS0035-NOV20	µg/g	0.5	<0.5	0	20	104	70	130	101	70	130
Copper	EMS0035-NOV20	μg/g	0.1	<0.1	4	20	103	70	130	96	70	130
Molybdenum	EMS0035-NOV20	µg/g	0.1	<0.1	5	20	99	70	130	100	70	130
Nickel	EMS0035-NOV20	ug/g	0.5	<0.5	0	20	101	70	130	98	70	130
Lead	EMS0035-NOV20	ug/g	0.1	<0.1	1	20	103	70	130	97	70	130
Antimony	EMS0035-NOV20	μg/g	0.8	<0.8	ND	20	100	70	130	106	70	130
Selenium	EMS0035-NOV20	μg/g	0.7	<0.7	ND	20	100	70	130	97	70	130
Thallium	EMS0035-NOV20	μg/g	0.02	<0.02	3	20	107	70	130	109	70	130
Uranium	EMS0035-NOV20	μg/g	0.002	<0.002	4	20	97	70	130	100	70	130
Vanadium	EMS0035-NOV20	μg/g	3	<3	0	20	102	70	130	100	70	130
Zinc	EMS0035-NOV20	μg/g	0.7	<0.7	1	20	98	70	130	94	70	130

20201109 16 / 24

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		N	fatrix Spike / Re	f.
	Reference	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0005-NOV20	μg/g	10	<10	ND	30	108	80	120	109	60	140
F1 (C6-C10)	GCM0067-NOV20	μg/g	10	<10	ND	30	118	80	120	100	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENV]GC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recove	-	Spike Recovery		ery Limits
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0039-NOV20	μg/g	10	<10	ND	30	111	80	120	119	60	140
F3 (C16-C34)	GCM0039-NOV20	μg/g	50	<50	ND	30	111	80	120	119	60	140
F4 (C34-C50)	GCM0039-NOV20	μg/g	50	<50	ND	30	111	80	120	119	60	140
F2 (C10-C16)	GCM0104-NOV20	μg/g	10	<10	ND	30	97	80	120	101	60	140
F3 (C16-C34)	GCM0104-NOV20	μg/g	50	<50	ND	30	97	80	120	101	60	140
F4 (C34-C50)	GCM0104-NOV20	μg/g	50	<50	ND	30	97	80	120	101	60	140

20201109 17 / 24

QC SUMMARY

Petroleum Hydrocarbons (F4G)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	·
	Reference	Blank	RPD	AC	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits %)		
						Recovery (%)	Low	High	(%)	Low	High	
F4G-sg (GHH)	GCM0118-NOV20	μg/g	200	<200	NA	30	91	80	120	NA	60	140

рΗ

Method: SM 4500 | Internal ref.: ME-CA-[ENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref.	
	Reference			Blank	RPD	AC (%)	Spike	Recover	•	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
рН	ARD0011-NOV20	pH Units	0.05		0	20	100	80	120			
рН	ARD0024-NOV20	pH Units	0.05		0	20	100	80	120			

20201109 18 / 24

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(,	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0078-NOV20	μg/g	0.05	< 0.05	48	40	90	50	140	105	50	140
2-Methylnaphthalene	GCM0078-NOV20	μg/g	0.05	< 0.05	55	40	86	50	140	101	50	140
Acenaphthene	GCM0078-NOV20	μg/g	0.05	< 0.05	21	40	94	50	140	103	50	140
Acenaphthylene	GCM0078-NOV20	μg/g	0.05	< 0.05	ND	40	86	50	140	111	50	140
Anthracene	GCM0078-NOV20	μg/g	0.05	< 0.05	32	40	91	50	140	109	50	140
Benzo(a)anthracene	GCM0078-NOV20	μg/g	0.05	< 0.05	45	40	93	50	140	NV	50	140
Benzo(a)pyrene	GCM0078-NOV20	μg/g	0.05	< 0.05	45	40	102	50	140	NV	50	140
Benzo(b+j)fluoranthene	GCM0078-NOV20	μg/g	0.05	< 0.05	40	40	96	50	140	NV	50	140
Benzo(ghi)perylene	GCM0078-NOV20	μg/g	0.1	< 0.1	38	40	96	50	140	72	50	140
Benzo(k)fluoranthene	GCM0078-NOV20	μg/g	0.05	< 0.05	50	40	97	50	140	NV	50	140
Chrysene	GCM0078-NOV20	μg/g	0.05	< 0.05	45	40	94	50	140	NV	50	140
Dibenzo(a,h)anthracene	GCM0078-NOV20	μg/g	0.06	< 0.06	43	40	93	50	140	72	50	140
Fluoranthene	GCM0078-NOV20	μg/g	0.05	< 0.05	21	40	96	50	140	NV	50	140
Fluorene	GCM0078-NOV20	μg/g	0.05	< 0.05	9	40	91	50	140	100	50	140
Indeno(1,2,3-cd)pyrene	GCM0078-NOV20	μg/g	0.1	< 0.1	42	40	94	50	140	76	50	140
Naphthalene	GCM0078-NOV20	μg/g	0.05	< 0.05	21	40	93	50	140	99	50	140
Phenanthrene	GCM0078-NOV20	μg/g	0.05	< 0.05	31	40	93	50	140	NV	50	140
Pyrene	GCM0078-NOV20	μg/g	0.05	< 0.05	33	40	105	50	140	NV	50	140
1-Methylnaphthalene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	85	50	140	81	50	140
2-Methylnaphthalene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	85	50	140	82	50	140

20201109 19 / 24

QC SUMMARY

Semi-Volatile Organics (continued)

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Ref	<i>.</i>
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits 6)	Spike Recovery		ry Limits %)
						(75)	(%)	Low	High	(%)	Low	High
Acenaphthene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	85	50	140	81	50	140
Acenaphthylene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	84	50	140	80	50	140
Anthracene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	87	50	140	81	50	140
Benzo(a)anthracene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	85	50	140	80	50	140
Benzo(a)pyrene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	86	50	140	81	50	140
Benzo(b+j)fluoranthene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	86	50	140	82	50	140
Benzo(ghi)perylene	GCM0135-NOV20	μg/g	0.1	< 0.1	ND	40	84	50	140	80	50	140
Benzo(k)fluoranthene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	86	50	140	80	50	140
Chrysene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	88	50	140	84	50	140
Dibenzo(a,h)anthracene	GCM0135-NOV20	μg/g	0.06	< 0.06	ND	40	82	50	140	77	50	140
Fluoranthene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	87	50	140	82	50	140
Fluorene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	85	50	140	80	50	140
Indeno(1,2,3-cd)pyrene	GCM0135-NOV20	μg/g	0.1	< 0.1	ND	40	83	50	140	78	50	140
Naphthalene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	85	50	140	81	50	140
Phenanthrene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	87	50	140	81	50	140
Pyrene	GCM0135-NOV20	μg/g	0.05	< 0.05	ND	40	88	50	140	83	50	140

20201109

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-[ENV]GC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	icate	LCS	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits 6)	Spike Recovery		ery Limits %)
						(76)	(%)	Low	High	(%)	Low	High
Benzene	GCM0005-NOV20	μg/g	0.02	<0.02	ND	50	96	60	130	100	50	140
Ethylbenzene	GCM0005-NOV20	μg/g	0.05	<0.05	ND	50	85	60	130	93	50	140
m/p-xylene	GCM0005-NOV20	μg/g	0.05	<0.05	ND	50	88	60	130	97	50	140
o-xylene	GCM0005-NOV20	μg/g	0.05	<0.05	ND	50	88	60	130	96	50	140
Toluene	GCM0005-NOV20	μg/g	0.05	<0.05	ND	50	89	60	130	96	50	140
Benzene	GCM0067-NOV20	μg/g	0.02	<0.02	ND	50	115	60	130	97	50	140
Ethylbenzene	GCM0067-NOV20	μg/g	0.05	<0.05	ND	50	103	60	130	91	50	140
m/p-xylene	GCM0067-NOV20	μg/g	0.05	<0.05	ND	50	107	60	130	95	50	140
o-xylene	GCM0067-NOV20	μg/g	0.05	<0.05	ND	50	106	60	130	94	50	140
Toluene	GCM0067-NOV20	μg/g	0.05	<0.05	ND	50	107	60	130	94	50	140

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0008-NOV20	μg/g	0.5	<0.5	ND	20	98	80	120	110	70	130
Water Soluble Boron	ESG0021-NOV20	μg/g	0.5	<0.5	ND	20	93	80	120	108	70	130

20201109 21 / 24

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20201109 22 / 24

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20201109 23 / 24

Request for Laboratory Services and CHAIN OF CUSTODY

No: 010840 Page 1 of 1

- Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment

- London: 657 Consortium Court, London, ON, N6E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361

Received By: J. Bur		Received By		4				on Sec				1			1	-0				T C				
Received Date: 130 130 (mm/dd/y Received Time: 14 : 43 (hr : min)	(y)	Custody Seal Custody Seal		es No			Coolin	ng Agent erature U	Prese Jpon F	nt: Y leceipt	es (°C)	No L	6	Type:	,					LABI	LIMS #	CA	1493	2-
REPORT INFORMATION	IN	VOICE INFO	RMATION		1															To Asia			00	+20
Company: DS Consultants	(same as Re	eport Informa	ition)		Quo	tation #	7			dave							P.C	. #:						
Contact: Drew Doak	Company: DS		ant s		Proje	ect #:	i	20-	-2	65	-40	00			Site Location/ID: Thom buy									
Address: 6221 Huy 7 W716	Contact:	Paviola										URNA	ROU	ND TI	ME (TAT)									
Vaughan, ON LYH OK8 Phone: 905-715-4182	Address:				Regular TAT (5-7days)															ory holidays & begins next be				
Phone: 405-715- 418d	- /	47 70	1 - 700	2	RUSH TAT (Additional Charges May Apply):												s							
Fax:	The state of the s	47-78		- C	PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRI								PRESENTATIVE PRIOR TO SUBMISSION E: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED											
Email: drew, doak @ dscarsustants, co	Email: Paviole	a-dervan	idisc	usukats.c	Spec	cify Due	Date:					_			S- 4	-0	WITH SO	S DRINKI						SUBMITTED
	ULATIONS											-	-	-	2000	-Canadana	STED						The same	
Regulation 153/04: ☐ Jable 1	Other Regulatio			er By-Law:		M	8.1		SV	oc	PCB	P	PHC VO		OC Pest			Other	(please sp			TCLP		
☐ Table 1 ☐ Res/Park Soil Texture: ☐ Table 2 ☐ Ind/Com ☐ Coarse	☐ Reg 347/558		Sanitary						0.876		100								Pkg.	Specify				
☐ Table 3 ☐ Agri/Other ☐ Medium	☐ CCME ☐	Other:		cipality:		(lios-l	S.					DA CVEN	DESERT								- G	TCLP tests		
Table Fine	MISA _				9	Jics C,SAF	Matais & High games (ic), Na-water) (ic), Na-water) Full Metals Suite (ic) metals plus 6HWS, solitonly Hg. CA				Aroclor					10					zati	I&M		
RECORD OF SITE CONDITION (RSC)	YES U	NO			(N/N)	rgar WS),E	uite	VICU, PB				_				alty oth					teri	□voc	COM	MENTS:
					red	DH.(B(F	S SWH)	S 0,00,00	1	ls, CPs	[a]	(E)				S or spec				9	arac	□РСВ		
SAMPLE IDENTIFICATION	DATE	TIME SAMPLED	# OF BOTTLES	MATRIX	Field Filtered	og P. Cost	leta s plus B	eta Be.B.C.	PAHs only	S. Is, ABN	Total	F1-F4 + BTEX	only	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or s				Sewer Use: Specify pkg:	Water Characterization Pkg	□ _{B(a)P}		
	Oram ELD	OF WILL EED	BOTTLES		ple	Crvi, ONB-WB	JI N	P N S,Ba.E	\HS	SVOCs all ind PAHs, A	PCBs	-F4	-F4	OCs Tel BT	EX	Stic				Wer eify pk	ater	DABN	1	
1	- 1 00/	1 1 1 1 1 1 1			I	≥ 500	ਜ਼ 5	S.g.	P/	S H	PC	F	F 5	> #	8	Pe		1		Speed	S en	☐ Ignit.		2006
1 TPIA	Oct. 29/20	Pu	1	Som					V															
2 TP1 B 3 TP3 A	- (1	11	1	11					V				13/19/											
3 TP3 A	()	"	1	(1	1				/													Sign of		
4 TP3 B 5 TP3 A DUP!	11	(1	1	11					1			-,												
5 TP3 A DUPI	1/	11	1	11					V	14														
6 TP3-2	11	4	5	[1		1			1			1											00	hold
7 TP5	c/	11	5	(1		1	1		1			1												1.1
8 TP6	11	1,	5	11	1000	1			/			1											on	NOIG
9 TP6 DUP2	11	11	1	()		1														\Box		Mary and		
10 TP7	11	10	5	11		/	1	320	/			1					ie I							
11 TP8	(1	11	5	11		1		101/	1	317/		1												
12		V J																	100					
Observations/Comments/Special Instructions	784	Flo.					10	100				4,8619				SECRETARY OF								
Sampled By (NAME): Matt Zum R	r	THEA.	Signature:	2	A	3		(_				10	. 20	. 200	30					20. (
Relinquished by (NAME):		N Wall	Signature:	10	000	8	~	40	0	-		-			Date: 10 , 30 , 20 00 (mm/dd/yy) Pink Copy - C									
Revision #: 1.2 Note: Submission of samples to SGS Date of Issue: 09 Sept, 2019 the contract, or in an alternal	is acknowledgement th	nat you have been	provided direct	tion on sample co	llection/	handling a	ind trans	sportation	of samp	oles. {2}	Submiss	sion of s	samples	to SGS	Date: is cons	sidered a	/_ uthorization fo	or completion	n of more	nm/dd/yy Signature		ppear on the	1 1	ite Copy - SGS etained on file in
Date of Issue: 09 Sept, 2019 the contract, or in an alternal	http://	//www.sgs.com/te	rms_and_condi	tions.htm. (Printe	d copies	are avail	able upo	aodresses on request	tor no a	ntion is	ar cost. drawn to	the limi	tation of	upon re f liability	quest. indem	This do inificatio	cument is issu n and jurisdict	ed by the Co ion issues do	ompany un efined there	der its Ge ein.	neral Co	onditions of	Service access	sible at

CA14445-OCT20 R

20-265-400, Thornbury ON.

Prepared for

DS Consultants

First Page

CLIENT DETAIL	.S	LABORATORY DETAIL	LS
Client	DS Consultants	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	6221 Highway 7	Address	185 Concession St., Lakefield ON, K0L 2H0
	Vaughan, Ontario		
	L4H 0K8. Canada		
Contact	Drew Doak	Telephone	705-652-2143
Telephone	905-264-9393	Facsimile	705-652-6365
Facsimile	905-264-2685	Email	brad.moore@sgs.com
Email	drew.doak@dsconsultants.ca	SGS Reference	CA14445-OCT20
Project	20-265-400, Thornbury ON.	Received	10/16/2020
Order Number		Approved	10/22/2020
Samples	Ground Water (3)	Report Number	CA14445-OCT20 R
		Date Reported	10/22/2020

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 7 degrees C

Cooling Agent Present:Yes

Custody Seal Present:Yes

Chain of Custody Number:017483

SIGNATORIES

Brad Moore Hon. B.Sc

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

1/22

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-10
Exceedance Summary	11
QC Summary	12-20
Legend	21
Annexes	22

CA14445-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury ON.

Project Manager: Drew Doak

ACKAGE: REG153 - BTEX (WATE	R)		Sample Number	7	8	9
			Sample Name	BH 20-1	BH 20-2	BH 20-3
= REG153 / GROUND WATER / COARSE - TABLE 2	- All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
TEX						
Benzene	μg/L	0.5	5	< 0.5	< 0.5	< 0.5
Ethylbenzene	μg/L	0.5	2.4	< 0.5	< 0.5	< 0.5
Toluene	μg/L	0.5	24	< 0.5	< 0.5	0.5
Xylene (total)	μg/L	0.5	300	< 0.5	< 0.5	< 0.5
m/p-xylene	μg/L	0.5		< 0.5	< 0.5	< 0.5
o-xylene	μg/L	0.5		< 0.5	< 0.5	< 0.5
			Occupio Nombre	7	0	0
PACKAGE: REG153 - Hydrides (WA	TER)		Sample Number		8	9
			Sample Name	BH 20-1	BH 20-2	BH 20-3
= REG153 / GROUND WATER / COARSE - TABLE 2	- All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
lydrides						
Antimony	μg/L	0.09	6	0.15	< 0.09	0.30
Arsenic	μg/L	0.2	25	< 0.2	< 0.2	0.7
Selenium	μg/L	0.04	10	0.04	< 0.04	0.14

CA14445-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury ON.

Project Manager: Drew Doak

DACKACE: DEC152 Motols and Inc	raaniaa		Sample Number	7	8	9
PACKAGE: REG153 - Metals and Inc WATER)	луапісѕ		Campio Hamboi	,	J	· ·
WATER)			Sample Name	BH 20-1	BH 20-2	BH 20-3
1 = REG153 / GROUND WATER / COARSE - TABLE 2 -	All Types of Branerty Lleas	LINDEEINED	Sample Matrix	Ground Water	Ground Water	Ground Water
1 - REG133 / GROUND WATER / COARSE - TABLE 2 -	All Types of Floperty Oses -	ONDEFINED	Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
Metals and Inorganics						
Barium	μg/L	0.02	1000	43.7	31.2	58.2
Beryllium	μg/L	0.007	4	< 0.007	< 0.007	< 0.007
Boron	μg/L	2	5000	15	17	85
Cadmium	μg/L	0.003	2.7	< 0.003	0.005	< 0.003
Chromium	μg/L	0.08	50	0.14	3.94	0.11
Cobalt	μg/L	0.004	3.8	0.120	0.672	0.802
Copper	μg/L	0.2	87	1.9	3.4	2.4
Lead	μg/L	0.01	10	0.10	0.60	0.09
Molybdenum	μg/L	0.04	70	0.32	0.88	4.80
Nickel	μg/L	0.1	100	0.3	1.7	2.2
Silver	μg/L	0.05	1.5	< 0.05	< 0.05	< 0.05
Thallium	μg/L	0.005	2	< 0.005	0.011	0.029
Uranium	μg/L	0.002	20	0.008	0.596	1.37
Vanadium	μg/L	0.01	6.2	0.07	0.53	0.25
Zinc	μg/L	2	1100	< 2	5	< 2

Client: DS Consultants

Project: 20-265-400, Thornbury ON.

Project Manager: Drew Doak

Samplers: Matt Zammit

PACKAGE: REG153 - Na (WATE	FR)		Sample Number	7	8	9
TOO SE. REGIOO Ha (WATE	,		Sample Name	BH 01	BH 0	BH 20 3
_1 = REG153 / GROUND WATER / COARSE - TAI	ABLE 2 - All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
The state of the s	SEE 2 7 m Types of Tropolly cool	ONDE: INEB	Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
Na						
Sodium	μg/L	10	490000	19600	19100	16 00
PACKAGE: REG153 - Other (OF	RP) (WATER)		Sample Number	7	8	9
(1	, ,		Sample Name	BH 20-1	BH 20-2	BH 20-3
L1 = REG153 / GROUND WATER / COARSE - TAI	ABLE 2 - All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
	76.5.5	_	Sample Date	15/10/ 020	15/10/ 0 0	15/10/20 0
Parameter	Units	RL	L1	Result	Result	Result
Other (ORP)						
Mercury (total)	μg/L	0.01	0.29	< 0.01	< 0.01	< 0.01
рН	No unit	0.05		7.35	7.64	7.63
Chloride	μg/L	00	790000	41000	58000	110000
Chromium VI	μg/L	0.2	25	< 0.2	< 0.2	< 0.2
Cyanide (free)	μg/L	2	66	< 2	< 2	< 2
PACKAGE: REG153 - PAHs (WA	ATER)		Sample Number	7	8	9
			Sample Name	BH 20-1	BH 20-2	BH 20-3
L1 = REG153 / GROUND WATER / COARSE - TAI	ABLE 2 - All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
	·		Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
PAHs						
Acenaphthene	μg/L	0.1	4.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	μg/L	0.1	1	< 0.1	< 0.1	< 0.1
Anthracene	μg/L	0.1	2.4	< 0.1	< 0.1	< 0.1
Benzo(a)anthracene	μg/L	0 1	1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	μg/L	0.01	0.01	< 0.01	< 0.01	< 0.01

Client: DS Consultants

Project: 20-265-400, Thornbury ON.

Project Manager: Drew Doak

Samplers: Matt Zammit

PACKAGE: REG153 - PAHs (WATER)	2)		Sample Number	7	8	9
			Sample Name	BH 20-1	BH 20-2	BH 20-3
1 = REG153 / GROUND WATER / COARSE - TABLE 2 - A	All Types of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
PAHs (continued)						
Benzo(b+j)fluoranthene	μg/L	0.1	0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	μg/L	0.2	0.2	< 0.2	< 0.2	< 0.2
Benzo(k)fluoranthene	μg/L	0.1	0.1	< 0.1	< 0.1	< 0.1
Chrysene	μg/L	0.1	0.1	< 0.1	< 0.1	< 0.1
Dibenzo(a,h)anthracene	μg/L	0.1	0.2	< 0.1	< 0.1	< 0.1
Fluoranthene	μg/L	0.1	0.41	< 0.1	< 0.1	< 0.1
Fluorene	μg/L	0.1	120	< 0.1	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.2	< 0.2	< 0.2	< 0.2
1-Methylnaphthalene	μg/L	0.5		< 0.5	< 0.5	< 0.5
2-Methylnaphthalene	μg/L	0.5		< 0.5	< 0 5	< 0.5
Methylnaphthalene, 2-(1-)	μg/L	0.5	3.2	< 0.5	< 0.5	< 0.5
Naphthalene	μg/L	0.5	11	< 0.5	< 0.5	< 0.5
Phenanthrene	μg/L	0.1	1	< 0.1	< 0.1	< 0.1
Pyrene	μg/L	0.1	4.1	< 0.1	< 0.1	< 0.1

CA14445-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury ON.

Project Manager: Drew Doak

Samplers: Matt Zammit

7 8 9 Sample Number PACKAGE: REG153 - PHCs (WATER) Sample Name BH 20-1 BH 20-2 BH 20-3 Sample Matrix **Ground Water** Ground Water **Ground Water** L1 = REG153 / GROUND WATER / COARSE - TABLE 2 - All Types of Property Uses - UNDEFINED Sample Date 15/10/2020 15/10/2020 15/10/2020 Units RL L1 Parameter Result Result Result **PHCs** 25 750 < 25 < 25 < 25 F1 (C6-C10) μg/L 25 < 25 < 25 < 25 F1-BTEX (C6-C10) μg/L < 100 < 100 < 100 F2 (C10-C16) μg/L 100 150 F3 (C16-C34) 200 500 < 200 < 200 < 200 μg/L F4 (C34-C50) μg/L 200 500 < 200 < 200 < 200 YES YES YES Chromatogram returned to baseline at Yes / No nC50 8 7 9 Sample Number PACKAGE: REG153 - SVOC Surrogates (WATER) BH 20-2 BH 20-3 Sample Name BH 20-1 Sample Matrix **Ground Water Ground Water Ground Water** L1 = REG153 / GROUND WATER / COARSE - TABLE 2 - All Types of Property Uses - UNDEFINED 15/10/2020 Sample Date 15/10/2020 15/10/2020 Parameter Units RL L1 Result Result Result **SVOC Surrogates** 82 83 75 Surr Rec % Surr 2-Methylnaphthalene-D10 77 Surr Fluoranthene-D10 Surr Rec % 90 80 82 82 73 Surr 2-Fluorobiphenvl Surr Rec % Surr Rec % 80 99 79 Surr 4-Terphenyl-d14

Client: DS Consultants

Project: 20-265-400, Thornbury ON.

Project Manager: Drew Doak

Samplers: Matt Zammit

PACKAGE: REG153 - THMs (VOC)	(WATER)		Sample Number	7	8	9
			Sample Name	BH 01	BH 0	BH 20 3
_1 = REG153 / GROUND WATER / COARSE - TABLE	2 - All Types of Property Uses - U	JNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
THMs (VOC)						
Bromodichloromethane	μg/L	0.5	16	0 5	0 5	0 5
Bromoform	μg/L	0.5	25	< 0.5	< 0.5	< 0.5
Dibromochloromethane	μg/L	0.5	25	< 0.5	< 0.5	< 0.5
DAGUAGE BEG/55 1/55 5			Comple Number	7	8	9
PACKAGE: REG153 - VOC Surrog	jates (WATER)		Sample Number			
			Sample Name	BH 20-1	BH 20-2	BH 20-3
L1 = REG153 / GROUND WATER / COARSE - TABLE	2 - All Types of Property Uses - L	JNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
VOC Surrogates						
Surr 1,2-Dichloroethane-d4	Surr Rec %			108	110	108
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-		94	97	95
Surr 4-Bromofluorobenzene	Surr Rec %	-		88	89	89
PACKAGE: REG153 - VOCs (WAT	ER)		Sample Number	7	8	9
			Sample Name	BH 20-1	BH 20-2	BH 20-3
L1 = REG153 / GROUND WATER / COARSE - TABLE	E 2 - All Types of Property Uses - L	JNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
VOCs						
Acetone	μg/L	30	2700	< 30	< 30	< 30
Bromomethane	μg/L	0.5	0.89	< 0.5	< 0.5	< 0.5
Carbon tetrachloride	μg/L	0.2	0.79	< 0.2	< 0 2	< 0.2
Chlorobenzene	μg/L	0 5	30	< 0.5	< 0.5	< 0.5
Chloroform	μg/L	0.5	2.4	< 0.5	< 0.5	< 0.5

Client: DS Consultants

Project: 20-265-400, Thornbury ON.

Project Manager: Drew Doak

Samplers: Matt Zammit

DAOKAOE BEOLEO MOO MAIATERY			Sample Number	7	8	9
ACKAGE: REG153 - VOCs (WATER)			•			
			Sample Name	BH 20-1	BH 20-2	BH 20-3
REG153 / GROUND WATER / COARSE - TABLE 2 - All T	ypes of Property Uses -	UNDEFINED	Sample Matrix	Ground Water	Ground Water	Ground Water
			Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
OCs (continued)						
1,2-Dichlorobenzene	μg/L	0.5	3	< 0.5	< 0.5	< 0.5
1,3-Dichlorobenzene	μg/L	0.5	59	< 0.5	< 0.5	< 0.5
1,4-Dichlorobenzene	μg/L	0.5	1	< 0.5	< 0.5	< 0.5
Dichlorodifluoromethane	μg/L	2.0	590	< 2	< 2	< 2
1,1-Dichloroethane	μg/L	0.5	5	< 0.5	< 0.5	< 0.5
1,2-Dichloroethane	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
1,1-Dichloroethylene	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
trans-1,2-Dichloroethene	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
cis-1,2-Dichloroethene	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
1,2-Dichloropropane	μg/L	0.5	5	< 0.5	< 0.5	< 0.5
cis-1,3-Dichloropropene	μg/L	0.5		< 0.5	< 0.5	< 0.5
trans-1,3-Dichloropropene	μg/L	0.5		< 0.5	< 0.5	< 0.5
1,3-dichloropropene (total)	μg/L	0.5	0.5	< 0.5	< 0.5	< 0.5
Ethylenedibromide	μg/L	0.2	0.2	< 0.2	< 0.2	< 0.2
n-Hexane	μg/L	1.0	51	< 1	< 1	< 1
Methyl ethyl ketone	μg/L	20	1800	< 20	< 20	< 20
Methyl Isobutyl Ketone	μg/L	20	640	< 20	< 20	< 20
Methyl-t-butyl Ether	μg/L	2.0	15	< 2	< 2	< 2
Methylene Chloride	μg/L	0.5	50	< 0.5	< 0.5	< 0.5
Styrene	μg/L	0.5	5.4	< 0.5	< 0.5	< 0.5
Tetrachloroethylene (perchloroethylene)	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
1,1,1,2-Tetrachloroethane	μg/L	0.5	1.1	< 0.5	< 0.5	< 0.5
1,1,2,2-Tetrachloroethane	μg/L	0.5	1	< 0.5	< 0.5	< 0.5
1,1,1-Trichloroethane	μg/L	0.5	200	< 0.5	< 0.5	< 0.5
		0.5	4.7	< 0.5	< 0.5	< 0.5
1,1,2-Trichloroethane	μg/L	0.5	4.1	~ U.U	- 0 0	~ 0.0

CA14445-OCT20 R

Client: DS Consultants

Project: 20-265-400, Thornbury ON.

Project Manager: Drew Doak

PACKAGE: REG153 - VOCs (WATE	ER)		Sample Numbe	r 7	8	9
			Sample Name	BH 01	BH 0	BH 20 3
L1 = REG153 / GROUND WATER / COARSE - TABLE :	2 - All Types of Property Uses -	UNDEFINED	Sample Matri	Ground Water	Ground Water	Ground Water
			Sample Date	15/10/2020	15/10/2020	15/10/2020
Parameter	Units	RL	L1	Result	Result	Result
VOCs (continued)						
Trichloroethylene	μg/L	0.5	1.6	< 0.5	< 0.5	< 0.5
Trichlorofluoromethane	μg/L	5.0	150	< 5	< 5	< 5
Vinyl Chloride	μg/L	0.2	0.5	< 0.2	< 0 2	< 0.2

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20201022 11 / 22

QC SUMMARY

Anions by IC

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference		Blank		RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chloride	DIO0382-OCT20	μg/L	200	<200	2	20	95	80	120	101	75	125

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	LCS/Spike Blank		LCS/Spike Blank Matrix Spi		latrix Spike / Ref	
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery	Recove	ry Limits 6)	
							Recovery (%)	Low	High	(%)	Low	High	
Cyanide (free)	SKA0180-OCT20	μg/L	2	<2	ND	10	97	90	110	90	75	125	

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference Blank RP	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)			
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA0175-OCT20	ug/L	0.2	<0.2	0	20	97	80	120	86	75	125

20201022 12 / 22

QC SUMMARY

Mercury by CVAAS

Method: SM 3112/SM 3112B | Internal ref.: ME-CA-IENVISPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%) Low High		Spike Recovery	Recovery Lim	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury (total)	EHG0017-OCT20	ug/L	0.01	0.01 0.00 ND 20	20	97	80	120	105	70	130	

20201022 13 / 22

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	licate	LC:	S/Spike Blank		Ма	atrix Spike / Ref	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Silver	EMS0088-OCT20	ug/L	0.05	<0.05	ND	20	106	90	110	90	70	130
Arsenic	EMS0088-OCT20	μg/L	0.2	<0.2	6	20	106	90	110	101	70	130
Barium	EMS0088-OCT20	μg/L	0.02	<0.02	0	20	103	90	110	107	70	130
Beryllium	EMS0088-OCT20	μg/L	0.007	<0.007	ND	20	96	90	110	95	70	130
Boron	EMS0088-OCT20	μg/L	2	<2	0	20	98	90	110	NV	70	130
Cadmium	EMS0088-OCT20	μg/L	0.003	<0.003	ND	20	106	90	110	104	70	130
Cobalt	EMS0088-OCT20	μg/L	0.004	<0.004	13	20	105	90	110	102	70	130
Chromium	EMS0088-OCT20	ug/L	0.08	<0.08	ND	20	104	90	110	103	70	130
Copper	EMS0088-OCT20	ug/L	0.2	<0.2	1	20	104	90	110	106	70	130
Molybdenum	EMS0088-OCT20	ug/L	0.04	<0.04	1	20	100	90	110	100	70	130
Sodium	EMS0088-OCT20	ug/L	10	< 10	1	20	97	90	110	92	70	130
Nickel	EMS0088-OCT20	μg/L	0.1	<0.1	2	20	103	90	110	101	70	130
Lead	EMS0088-OCT20	μg/L	0.01	<0.01	1	20	104	90	110	105	70	130
Antimony	EMS0088-OCT20	ug/L	0.09	<0.09	2	20	104	90	110	84	70	130
Selenium	EMS0088-OCT20	μg/L	0.04	<0.04	0	20	103	90	110	100	70	130
Thallium	EMS0088-OCT20	μg/L	0.005	<0.005	ND	20	105	90	110	105	70	130
Uranium	EMS0088-OCT20	μg/L	0.002	<0.002	14	20	95	90	110	96	70	130
Vanadium	EMS0088-OCT20	μg/L	0.01	<0.01	4	20	105	90	110	100	70	130
Zinc	EMS0088-OCT20	μg/L	2	<2	ND	20	104	90	110	130	70	130

20201022 14 / 22

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0373-OCT20	μg/L	25	<25	ND	30	111	60	140	91	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		M	Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recover	•	Spike Recovery		ry Limits 6)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
F2 (C10-C16)	GCM0363-OCT20	μg/L	100	<100	ND	30	95	60	140	79	60	140	
F3 (C16-C34)	GCM0363-OCT20	μg/L	200	<200	ND	30	95	60	140	79	60	140	
F4 (C34-C50)	GCM0363-OCT20	μg/L	200	<200	ND	30	95	60	140	79	60	140	

20201022 15 / 22

CA14445-OCT20 R

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		м	atrix Spike / Ref	ī.
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
pH	EWL0340-OCT20	No unit	0.05	NA	0		101			NA		

20201022 16 / 22

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3510C/8270D | Internal ref.: ME-CA-IENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	ī.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	-	Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0364-OCT20	μg/L	0.5	< 0.5	ND	30	94	50	140	69	50	140
2-Methylnaphthalene	GCM0364-OCT20	μg/L	0.5	< 0.5	ND	30	93	50	140	68	50	140
Acenaphthene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	97	50	140	72	50	140
Acenaphthylene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	95	50	140	71	50	140
Anthracene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	88	50	140	72	50	140
Benzo(a)anthracene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	96	50	140	76	50	140
Benzo(a)pyrene	GCM0364-OCT20	ug/L	0.01	< 0.01	ND	30	102	50	140	83	50	140
Benzo(b+j)fluoranthene	GCM0364-OCT20	ug/L	0.1	< 0.1	ND	30	100	50	140	78	50	140
Benzo(ghi)perylene	GCM0364-OCT20	μg/L	0.2	< 0.2	ND	30	95	50	140	74	50	140
Benzo(k)fluoranthene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	99	50	140	77	50	140
Chrysene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	95	50	140	75	50	140
Dibenzo(a,h)anthracene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	90	50	140	74	50	140
Fluoranthene	GCM0364-OCT20	ug/L	0.1	< 0.1	ND	30	90	50	140	78	50	140
Fluorene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	96	50	140	73	50	140
Indeno(1,2,3-cd)pyrene	GCM0364-OCT20	μg/L	0.2	< 0.2	ND	30	91	50	140	77	50	140
Naphthalene	GCM0364-OCT20	μg/L	0.5	< 0.5	ND	30	98	50	140	70	50	140
Phenanthrene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	94	50	140	74	50	140
Pyrene	GCM0364-OCT20	μg/L	0.1	< 0.1	ND	30	93	50	140	79	50	140

20201022 17 / 22

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ory Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	99	50	140
1,1,1-Trichloroethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	99	60	130	99	50	140
1,1,2,2-Tetrachloroethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	97	60	130	99	50	140
1,1,2-Trichloroethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	100	60	130	99	50	140
1,1-Dichloroethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	98	50	140
1,1-Dichloroethylene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	99	60	130	104	50	140
1,2-Dichlorobenzene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	99	50	140
1,2-Dichloroethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	100	50	140
1,2-Dichloropropane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	98	50	140
1,3-Dichlorobenzene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	99	50	140
1,4-Dichlorobenzene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	97	60	130	99	50	140
Acetone	GCM0372-OCT20	μg/L	30	<30	ND	30	100	60	130	91	50	140
Benzene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	100	60	130	100	50	140
Bromodichloromethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	97	60	130	96	50	140
Bromoform	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	95	60	130	97	50	140
Bromomethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	94	50	140	101	50	140
Carbon tetrachloride	GCM0372-OCT20	μg/L	0.2	<0.2	ND	30	97	60	130	99	50	140
Chlorobenzene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	99	60	130	99	50	140
Chloroform	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	97	60	130	98	50	140
cis-1,2-Dichloroethene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	97	60	130	99	50	140

20201022 18 / 22

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	F.
	Reference			Blank	RPD	AC (%)	Spike		ry Limits %)	Spike Recovery		ory Limits %)
						(70)	Recovery (%)	Low	High	(%)	Low	High
cis-1,3-Dichloropropene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	98	50	140
Dibromochloromethane	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	96	60	130	97	50	140
Dichlorodifluoromethane	GCM0372-OCT20	μg/L	2.0	<2	ND	30	84	50	140	95	50	140
Ethylbenzene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	102	60	130	102	50	140
Ethylenedibromide	GCM0372-OCT20	μg/L	0.2	<0.2	ND	30	99	60	130	100	50	140
n-Hexane	GCM0372-OCT20	μg/L	1.0	<1	ND	30	96	60	130	103	50	140
m/p-xylene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	102	60	130	102	50	140
Methyl ethyl ketone	GCM0372-OCT20	ug/L	20	<20	ND	30	101	60	130	98	50	140
Methyl Isobutyl Ketone	GCM0372-OCT20	μg/L	20	<20	ND	30	99	50	140	100	50	140
Methyl-t-butyl Ether	GCM0372-OCT20	μg/L	2.0	<2	ND	30	93	60	130	97	50	140
Methylene Chloride	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	95	60	130	100	50	140
o-xylene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	102	60	130	103	50	140
Styrene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	101	60	130	101	50	140
Tetrachloroethylene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	100	50	140
(perchloroethylene)												
Toluene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	101	60	130	100	50	140
trans-1,2-Dichloroethene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	96	60	130	102	50	140
trans-1,3-Dichloropropene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	101	60	130	100	50	140
Trichloroethylene	GCM0372-OCT20	μg/L	0.5	<0.5	ND	30	98	60	130	97	50	140
Trichlorofluoromethane	GCM0372-OCT20	μg/L	5.0	<5	ND	30	94	50	140	103	50	140
Vinyl Chloride	GCM0372-OCT20	μg/L	0.2	<0.2	ND	30	93	60	130	98	50	140

20201022 19 / 22

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20/022

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20201022 21 / 22

No:017483

Environment, Health & Safety
- Lakefield: 185 Concession St., Lakefield, ON KOL 2HO Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment
- London: 657 Consortium Court, London, ON, N6E 2S8 Phone 539-672 500 Toll Free: 877-848-8060 Fax: 519-672-0361
- Laboratory Information Section - Lab use only

Received Time::(hr : min) REPORT INFORMATION	EL LONIES TERMINATURES	VOICE INFO	RMATION	Yes No No				ing Agen	Upon I	receip	(-C)_	1	1	-6	}						LAB	LIMS #:	<u>U1</u>	14445c
Company: DS Consultants Contact: Drew Dogk	(same as R				140000000000000000000000000000000000000	tation #		100	2/-	- /	1						P.	O. #:						
	Company: DS	Consum	TANTS		Proje	ect#:	2	0-6	16.3		100			N. Contraction				te Loca		: '	That	nbu	7,0	ON
Address: 6221 Huy 7, until		Dia Di	erveni			-/							T	URNA	AROU	ND TIN	ME (TAT)							
Varyhen ON, LYH OK8 Phone: 905-715-4182	Address:							TAT (5									Samp	les rece	ived aft	ter 6pr	n or on	weeker	de statuto nds: TAT	ory holidays & weekends). begins next business day
	Phone: 647	781-	7402					tional (Day	2 [ays [3 Days	5 4	Days	5			
-ax:									SH FE	ASIBI	LITY	NITH	_	_			E PRIOR							
Email: Drew, Doak@dsconsittents.ca	Email: Parisi	a-derveni	@ dsca	ensistents.ca	Spec	ify Due	Date	:				_	-NO	IE: D	RINKII	NG (PO	WITH S	ATER S GS DRIN	AMPLE NKING I	S FO	R HUM.	AN CO	NSUMPT CUSTOD	ION MUST BE SUBMITTE Y
1	JLATIONS							d					LYS	IS F	REC	UES								
▼ O.Reg 153/04 □ O.Reg 406/19	Other Regulation	ns:	Sev	ver By-Law:		M	& I	1	SV	ОС	PCB	PI	НС	V	OC	Pest		Oth	er (ple	ase sp	ecify)		TCLP	
☐ Table 1 ☐ Res/Park Soil Texture: ☐ Table 2 ☐ Ind/Com ☐ Coarse ☐ Table 3 ☐ Agri/Other ☐ Medium/Fine ☐ Table Soil Volume ☐ <350m3 >350m3 RECORD OF SITE CONDITION (RSC)	CCME [MISA DOWS Not F	MMER Other: Reportable *See	Mun	Sanitary Storm Municipality:		anics S),EC,SAR-soil)	ite Ionly) Hg, CrVI	J.Pb,Mo,Ni,			Aroclor					other				9 Leachate		erization Pkg	Specify TCLP tests M&I	COMMENTS
SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED		MATRIX	Field Filtered (Y/N)	Metals & Inorganics indicavity, CN, Hg pH,(B(HWS), EC, SAR (CI, Na-water)	Full Metals Suite	ICP Metals only Sb.As.Ba.Be.B.Cd.Cr.Co.Cu.P	PAHs only	SVOCs all incl PAHs, ABNs, CPs	PCBs Total	F1-F4 + BTEX	F1-F4 only no BTEX	VOCs all incl BTEX	BTEX only	Pesticides Organochlorine or specify				Appendix 2: 406/1	Sewer Use: Specify pkg:	Water Charact	□PCB □B(a)P □ABN □Ignit.	Field fintered anly Crvi, Hg and dissoined m
1 BH 20-1	Oct 15,200	2 pm	14	aw		V			V			V		V										11
2 84 20-2	11	2:30 pm	14	aw		1		X	V			V		V										11
3 BH 20-3	11	3:00 Pm	14	GW		V			V			V		V									- 9.	11
4								1				Ť												
5								Í.										-						
6				1000				6										+						
7																	-	+						100
										-							_							
								N						-										
9					5			May 6																
0								My																
1														30										
2																								
Observations/Comments/Special Instructions																_								
ampled By (NAME): Matt Zamit		S	Signature:	Matt	7	grue	new	-							Date:	10	, 16	120	20	(m	m/dd/yy	()		Pink Copy - Client
telinquished by (NAME): avision # 1.4 Note: Submission of samples to SGS in the contract, or in an alternative to the contract.		S	Signature:		-										Date:						m/dd/yy			Yellow & White Copy - So