
# Profile 4 Swale to Hwy 26 Outlet



## Profile 5 DCBMH24 to Hwy 26 Outlet



# Profile 6 DCB01 to Hwy 26 Outlet

|             |                                                                                |                                                 |                                                                              |                                                                                           |                                                                              | -                                                                                   |                                                              |                                                   |                                                                               |                                                                                |                                                                                |                                                                                             |
|-------------|--------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|             | HGL                                                                            |                                                 |                                                                              |                                                                                           |                                                                              |                                                                                     |                                                              |                                                   |                                                                               |                                                                                |                                                                                | Peak values                                                                                 |
| Links:      | C1_2<br>Q=0.268 m³/s<br>L=21.555 m<br>D=1.52 m<br>V=0.862 m/s<br>S=0.00046 m/m | C12<br>Q=0.187 m³/s<br>V=0 m/s                  | C13<br>Q=0.296 m³/s<br>L=10.911 m<br>D=0.75 m<br>V=1.02 m/s<br>S=0.00275 m/m | C29<br>Q=0.116 m <sup>3</sup> /s<br>L=14.809 m<br>D=0.6 m<br>V=1.017 m/s<br>S=0.00338 m/m | C28<br>Q=0.121 m³/s<br>L=20.311 m<br>D=0.6 m<br>V=0.966 m/s<br>S=0.00295 m/r | C27<br>Q=0.114 m <sup>2</sup><br>L=34.163 m<br>D=0.6 m<br>V=0.962 m/<br>m S=0.00293 | n L=31.39<br>D=0.45<br>/s V=1.20                             | 01 m³/s Q<br>96 m L<br>5 m D<br>1 m/s V           | C25<br>Q=0.088 m³/s<br>=26.358 m<br>O=0.375 m<br>/=1.193 m/s<br>G=0.00304 m/m | C24<br>Q=0.057 m³/s<br>L=17.357 m<br>D=0.375 m<br>V=0.737 m/s<br>S=0.00288 m/m | C23<br>Q=0.048 m³/s<br>L=34.083 m<br>D=0.375 m<br>V=0.742 m/s<br>S=0.00293 m/m | C22<br>Q=0.042 m <sup>3</sup> /s<br>L=12.071 m<br>D=0.375 m<br>V=0.783 m/s<br>S=0.00331 m/m |
|             |                                                                                |                                                 |                                                                              |                                                                                           |                                                                              |                                                                                     |                                                              |                                                   |                                                                               |                                                                                |                                                                                | 186.5                                                                                       |
|             |                                                                                |                                                 |                                                                              |                                                                                           |                                                                              |                                                                                     |                                                              |                                                   |                                                                               |                                                                                |                                                                                | 185.5                                                                                       |
|             |                                                                                |                                                 |                                                                              |                                                                                           |                                                                              |                                                                                     |                                                              |                                                   |                                                                               |                                                                                |                                                                                | 185                                                                                         |
|             |                                                                                |                                                 |                                                                              |                                                                                           |                                                                              |                                                                                     |                                                              |                                                   |                                                                               |                                                                                |                                                                                | 184.5                                                                                       |
|             |                                                                                |                                                 |                                                                              |                                                                                           |                                                                              |                                                                                     |                                                              |                                                   |                                                                               |                                                                                |                                                                                | 184                                                                                         |
|             |                                                                                |                                                 |                                                                              |                                                                                           |                                                                              |                                                                                     |                                                              |                                                   |                                                                               |                                                                                |                                                                                | 183.5                                                                                       |
|             |                                                                                |                                                 |                                                                              |                                                                                           |                                                                              |                                                                                     |                                                              |                                                   |                                                                               |                                                                                |                                                                                | 183                                                                                         |
|             | 20                                                                             | 40                                              | 00                                                                           | 00                                                                                        | 100                                                                          | 100                                                                                 | 140                                                          | 100                                               | 0 40                                                                          | 0 200                                                                          | 220                                                                            | 182.5                                                                                       |
| 0<br>Nodes: | 20<br>H=182.617 m<br>M=182.617 m<br>R=184.6 m                                  | J7<br>H=182.6675 m<br>M=182.6675 m<br>R=184.6 m | 60<br>SWMF<br>H=185.179 m<br>M=185.179 m<br>R=186.3 m                        | H=185.1785 m<br>M=185.1785 m                                                              | 100<br>MH08<br>H=185.1788 m<br>M=185.1788 m<br>R=186.88 m                    | 120<br>DCBMH07<br>H=185.1792 m<br>M=185.1792 m<br>R=186.74 m                        | 140<br>DCBMH06<br>H=185.1791 m<br>M=185.1791 m<br>R=186.72 m | DCBMH05<br>H=185.3388<br>M=185.3388<br>R=186.73 m | DCBMH04<br>m H=185.499<br>m M=185.499                                         | DCBMH03<br>2 m H=185.5235<br>2 m M=185.5235                                    | DCBMH02<br>m H=185.5807 m<br>m M=185.5807 m                                    | DCB01<br>H=185.6072 m<br>M=185.6072 m<br>R=186.84 m                                         |

#### Post Development - 100yr 24hr SCS Type II - PCSWMM Output

```
EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.4)
```

\*\*\*\*\*\*\*\*\*\*
Element Count
\*\*\*\*\*\*\*\*

Number of rain gages ..... 14
Number of subcatchments ... 27
Number of nodes ..... 34
Number of links ..... 32
Number of pollutants .... 0
Number of land uses .... 0

| Name                    | Data Source                     |           | ecording<br>nterval |
|-------------------------|---------------------------------|-----------|---------------------|
| 25mm                    | 25mm                            | INTENSITY | 10 min.             |
| Chicago 4h 100Yr        | Chicago 4h 100Yr                | INTENSITY | 5 min.              |
| Chicago_4h_10Yr         | Chicago_4h_10Yr                 | INTENSITY | 5 min.              |
| Chicago_4h_25Yr         | Chicago_4h_25Yr                 | INTENSITY | 5 min.              |
| Chicago_4h_2Yr          | Chicago_4h_2Yr                  | INTENSITY | 5 min.              |
| Chicago_4h_50Yr         | Chicago_4h_50Yr                 | INTENSITY | 5 min.              |
| Chicago_4h_5yr          | Chicago_4h_5yr                  | INTENSITY | 5 min.              |
| SCS_Type_II_108.79mm    | _25Yr SCS_Type_II_108.79mm_25Yr | INTENSI   | TY 6 min.           |
| SCS_Type_II_121.11mm    | _50Yr SCS_Type_II_121.11mm_50Yr | INTENSI   | TY 6 min.           |
| SCS_Type_II_133.1mm_    | 100yr SCS_Type_II_133.1mm_100yr | INTENSI   | TY 6 min.           |
| SCS_Type_II_59.84mm_    | 2Yr SCS_Type_II_59.84mm_2Yr     | INTENSITY | 6 min.              |
| SCS_Type_II_79.64mm_    | 5Yr SCS_Type_II_79.64mm_5Yr     | INTENSITY | 6 min.              |
| SCS_Type_II_92.51mm_    | 10Yr SCS_Type_II_92.51mm_10Yr   | INTENSIT  | Y 6 min.            |
| Timmins_Storm_ $(0-25)$ | Timmins_Storm_(0-25)            | INTENSITY | 60 min.             |

| Name | Area |        | %Imperv | %Slope Rain Gage Outlet                  |
|------|------|--------|---------|------------------------------------------|
| A1   | 0.53 |        |         | 2.0000 SCS Type II 133.1mm 100yr J11     |
| A10  | 0.03 | 16.08  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH22 |
| A11  | 0.05 | 35.13  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCB13   |
| A12  | 0.04 | 28.62  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH14 |
| A13  | 0.03 | 23.40  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH15 |
| A14  | 0.05 | 28.33  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH16 |
| A15  | 0.05 | 26.70  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCB09   |
| A16  | 0.04 | 27.53  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH10 |
| A17  | 0.03 | 24.00  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH11 |
| A18  | 0.05 | 27.08  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH12 |
| A19  | 0.04 | 24.40  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH23 |
| A2   | 1.34 | 190.64 | 4.00    | 1.0000 SCS_Type_II_133.1mm_100yr J7      |
| A20  | 0.21 | 136.66 | 75.00   | 1.0000 SCS_Type_II_133.1mm_100yr J2      |
| A21  | 0.17 | 25.46  | 18.00   | 2.0000 SCS_Type_II_133.1mm_100yr SWMF    |
| A22  | 0.15 | 20.00  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCB01   |
| A23  | 0.02 | 16.00  | 80.00   | 2.0000 SCS_Type_II_133.1mm_100yr DCBMH02 |
| A24  | 0.03 | 12.00  | 100.00  | 2.0000 SCS_Type_II_133.1mm_100yr DCBMH03 |
| A25  | 0.04 | 10.00  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH05 |
| A26  | 0.05 | 10.00  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH06 |
| A27  | 0.04 | 10.00  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH07 |
| A3   | 0.23 | 39.72  | 95.00   | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH24 |
| A4   | 0.16 | 51.73  | 95.00   | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH25 |
| A5   | 0.11 | 43.98  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH04 |
| A6   | 0.12 | 40.62  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCB17   |
| A7   | 0.04 | 19.00  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH18 |
| A8   | 0.04 | 24.30  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH19 |
| A 9  | 0.05 | 15.48  | 100.00  | 1.0000 SCS_Type_II_133.1mm_100yr DCBMH20 |

| Name  | Туре     | Invert<br>Elev. | Max.<br>Depth | Ponded<br>Area | External<br>Inflow |
|-------|----------|-----------------|---------------|----------------|--------------------|
| DCB01 | JUNCTION | 185.43          | 1.41          | 0.0            |                    |
| DCB09 | JUNCTION | 185.35          | 1.41          | 0.0            |                    |
| DCB13 | JUNCTION | 185.43          | 1.43          | 0.0            |                    |
| DCB17 | JUNCTION | 185.54          | 1.68          | 0.0            |                    |

| DCBMH02      | JUNCTION | 185.39 | 1.17 | 0.0 |
|--------------|----------|--------|------|-----|
| DCBMH03      | JUNCTION | 185.29 | 1.56 | 0.0 |
| DCBMH04      | JUNCTION | 185.24 | 1.40 | 0.0 |
| DCBMH05      | JUNCTION | 185.09 | 1.64 | 0.0 |
| DCBMH06      | JUNCTION | 184.84 | 1.88 | 0.0 |
| DCBMH07      | JUNCTION | 184.74 | 2.00 | 0.0 |
| DCBMH10      | JUNCTION | 185.21 | 1.24 | 0.0 |
| DCBMH11      | JUNCTION | 185.02 | 1.23 | 0.0 |
| DCBMH12      | JUNCTION | 184.87 | 1.25 | 0.0 |
| DCBMH14      | JUNCTION | 185.30 | 1.24 | 0.0 |
| DCBMH15      | JUNCTION | 185.19 | 1.11 | 0.0 |
| DCBMH16      | JUNCTION | 185.03 | 1.09 | 0.0 |
| DCBMH18      | JUNCTION | 185.41 | 1.35 | 0.0 |
| DCBMH19      | JUNCTION | 185.17 | 1.55 | 0.0 |
| DCBMH20      | JUNCTION | 185.03 | 1.61 | 0.0 |
| DCBMH22      | JUNCTION | 184.79 | 1.15 | 0.0 |
| DCBMH23      | JUNCTION | 184.62 | 1.29 | 0.0 |
| DCBMH24      | JUNCTION | 184.96 | 1.20 | 0.0 |
| DCBMH25      | JUNCTION | 184.74 | 1.22 | 0.0 |
| J11          | JUNCTION | 185.76 | 0.24 | 0.0 |
| J12          | JUNCTION | 186.00 | 0.40 | 0.0 |
| J2           | JUNCTION | 186.50 | 0.41 | 0.0 |
| J7           | JUNCTION | 182.52 | 2.08 | 0.0 |
| MH08         | JUNCTION | 184.68 | 2.20 | 0.0 |
| MH21         | JUNCTION | 184.89 | 1.68 | 0.0 |
| OGS1         | JUNCTION | 184.48 | 1.42 | 0.0 |
| OGS2         | JUNCTION | 184.58 | 1.44 | 0.0 |
| Clark_Street | OUTFALL  | 185.75 | 0.00 | 0.0 |
| HWY26        | OUTFALL  | 182.51 | 1.52 | 0.0 |
| SWMF         | STORAGE  | 184.00 | 1.90 | 0.0 |

| Name | From Node | To Node      | Туре    | Length | %Slope Roughness |        |  |
|------|-----------|--------------|---------|--------|------------------|--------|--|
| C1   | DCBMH24   | DCBMH25      | CONDUIT | 27.3   | 0.5124           | 0.0130 |  |
| C1_2 | J7        | HWY26        | CONDUIT | 21.6   | 0.0464           | 0.0130 |  |
| C10  | DCBMH23   | OGS1         | CONDUIT | 8.7    | 0.4584           | 0.0130 |  |
| C11  | J11       | Clark Street | CONDUIT | 5.8    | 0.1718           | 0.0100 |  |

| C13   | OGS1    | SWMF    | CONDUIT | 10.9  | 0.2750 | 0.0130 |
|-------|---------|---------|---------|-------|--------|--------|
| C14   | DCB13   | DCBMH14 | CONDUIT | 27.8  | 0.4678 | 0.0130 |
| C15   | DCBMH15 | DCBMH16 | CONDUIT | 15.9  | 0.5017 | 0.0130 |
| C16   | DCBMH14 | DCBMH15 | CONDUIT | 22.1  | 0.4970 | 0.0100 |
| C17   | DCBMH16 | DCBMH22 | CONDUIT | 33.1  | 0.4835 | 0.0130 |
| C18   | DCB09   | DCBMH10 | CONDUIT | 28.2  | 0.4966 | 0.0130 |
| C19   | DCBMH10 | DCBMH11 | CONDUIT | 21.9  | 0.5013 | 0.0130 |
| C2    | DCBMH25 | OGS2    | CONDUIT | 3.4   | 0.2962 | 0.0130 |
| C20   | DCBMH11 | DCBMH12 | CONDUIT | 15.9  | 0.5038 | 0.0130 |
| C21   | DCBMH12 | DCBMH23 | CONDUIT | 33.2  | 0.5114 | 0.0130 |
| C22   | DCB01   | DCBMH02 | CONDUIT | 12.1  | 0.3314 | 0.0130 |
| C22_1 | J2      | J12     | CONDUIT | 115.2 | 0.4339 | 0.0300 |
| C22_4 | J12     | SWMF    | CONDUIT | 16.6  | 0.6035 | 0.0300 |
| C23   | DCBMH02 | DCBMH03 | CONDUIT | 34.1  | 0.2934 | 0.0130 |
| C24   | DCBMH03 | DCBMH04 | CONDUIT | 17.4  | 0.2881 | 0.0130 |
| C25   | DCBMH04 | DCBMH05 | CONDUIT | 26.4  | 0.3035 | 0.0130 |
| C26   | DCBMH05 | DCBMH06 | CONDUIT | 31.4  | 0.3185 | 0.0130 |
| C27   | DCBMH06 | DCBMH07 | CONDUIT | 34.2  | 0.2927 | 0.0130 |
| C28   | DCBMH07 | MH08    | CONDUIT | 20.3  | 0.2954 | 0.0130 |
| C29   | MH08    | OGS1    | CONDUIT | 14.8  | 0.3376 | 0.0130 |
| C3    | OGS2    | SWMF    | CONDUIT | 25.5  | 0.5103 | 0.0130 |
| C5    | DCB17   | DCBMH18 | CONDUIT | 25.8  | 0.5033 | 0.0130 |
| C6    | DCBMH18 | DCBMH19 | CONDUIT | 32.0  | 0.4995 | 0.0130 |
| C7_1  | DCBMH19 | DCBMH20 | CONDUIT | 28.9  | 0.4850 | 0.0130 |
| C7 2  | DCBMH20 | MH21    | CONDUIT | 29.0  | 0.4831 | 0.0130 |
| C8    | MH21    | DCBMH22 | CONDUIT | 19.3  | 0.5194 | 0.0130 |
| C9    | DCBMH22 | DCBMH23 | CONDUIT | 18.1  | 0.4970 | 0.0130 |
| C12   | SWMF    | J7      | OUTLET  |       |        |        |
|       |         |         |         |       |        |        |

| Conduit | Shape       | Full<br>Depth | Full<br>Area | Hyd.<br>Rad. | Max.<br>Width | No. of<br>Barrels | Full<br>Flow |
|---------|-------------|---------------|--------------|--------------|---------------|-------------------|--------------|
| C1      | CIRCULAR    | 0.45          | 0.16         | 0.11         | 0.45          | 1                 | 0.20         |
| C1_2    | RECT CLOSED | 1.52          | 3.71         | 0.47         | 2.44          | 1                 | 3.71         |
| C10     | CIRCULAR    | 0.60          | 0.28         | 0.15         | 0.60          | 1                 | 0.42         |
| C11     | DUMMY       | 0.00          | 0.00         | 0.00         | 0.00          | 1                 | 0.00         |
| C13     | CIRCULAR    | 0.75          | 0.44         | 0.19         | 0.75          | 1                 | 0.58         |

| C14   | CIRCULAR    | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 0.07 |
|-------|-------------|------|------|------|------|---|------|
| C15   | CIRCULAR    | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 0.07 |
| C16   | CIRCULAR    | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 0.09 |
| C17   | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 0.12 |
| C18   | CIRCULAR    | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 0.07 |
| C19   | CIRCULAR    | 0.30 | 0.07 | 0.07 | 0.30 | 1 | 0.07 |
| C2    | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 0.33 |
| C20   | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 0.12 |
| C21   | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 0.20 |
| C22   | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 0.10 |
| C22_1 | TRAPEZOIDAL | 0.40 | 0.58 | 0.21 | 2.65 | 1 | 0.45 |
| C22_4 | TRAPEZOIDAL | 0.40 | 0.58 | 0.21 | 2.65 | 1 | 0.53 |
| C23   | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 0.09 |
| C24   | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 0.09 |
| C25   | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 0.10 |
| C26   | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 0.16 |
| C27   | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 0.33 |
| C28   | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 0.33 |
| C29   | CIRCULAR    | 0.60 | 0.28 | 0.15 | 0.60 | 1 | 0.36 |
| C3    | CIRCULAR    | 0.75 | 0.44 | 0.19 | 0.75 | 1 | 0.80 |
| C5    | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 0.12 |
| C6    | CIRCULAR    | 0.38 | 0.11 | 0.09 | 0.38 | 1 | 0.12 |
| C7_1  | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 0.20 |
| C7_2  | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 0.20 |
| C8    | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 0.21 |
| C9    | CIRCULAR    | 0.45 | 0.16 | 0.11 | 0.45 | 1 | 0.20 |
|       |             |      |      |      |      |   |      |

\* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

Analysis Options \*\*\*\*\*\*\*\*

Flow Units ..... CMS

Process Models:

Rainfall/Runoff YES
RDII NO
Snowmelt NO
Groundwater NO
Flow Routing YES
Ponding Allowed YES
Water Quality NO

Infiltration Method ..... GREEN\_AMPT

| Flow Routing Method | DYNWAVE    |          |
|---------------------|------------|----------|
| Surcharge Method    | EXTRAN     |          |
| Starting Date       | 05/09/2022 | 00:00:00 |
| Ending Date         | 05/11/2022 | 00:00:00 |
| Antecedent Dry Days | 0.0        |          |
| Report Time Step    | 00:01:00   |          |
| Wet Time Step       | 00:05:00   |          |
| Dry Time Step       | 00:05:00   |          |
| Routing Time Step   | 5.00 sec   |          |
| Variable Time Step  | YES        |          |
| Maximum Trials      | 8          |          |
| Number of Threads   | 4          |          |
| Head Tolerance      | 0 001500 m |          |

| ******                                  | Volume    | Depth    |
|-----------------------------------------|-----------|----------|
| Runoff Quantity Continuity              | hectare-m | mm       |
| * * * * * * * * * * * * * * * * * * * * |           |          |
| Total Precipitation                     | 0.499     | 133.100  |
| Evaporation Loss                        | 0.000     | 0.000    |
| Infiltration Loss                       | 0.112     | 29.931   |
| Surface Runoff                          | 0.384     | 102.452  |
| Final Storage                           | 0.003     | 0.917    |
| Continuity Error (%)                    | -0.150    |          |
|                                         |           |          |
| ******                                  | ** 3      |          |
|                                         | Volume    | Volume   |
| Flow Routing Continuity                 | hectare-m | 10^6 ltr |
|                                         |           |          |
| Dry Weather Inflow                      | 0.000     | 0.000    |
| Wet Weather Inflow                      | 0.384     | 3.841    |
| Groundwater Inflow                      | 0.000     | 0.000    |
| RDII Inflow                             | 0.000     | 0.000    |
| External Inflow                         | 0.000     | 0.000    |
| External Outflow                        | 0.384     | 3.844    |
| Flooding Loss                           | 0.000     | 0.000    |
| Evaporation Loss                        | 0.000     | 0.000    |
| Exfiltration Loss                       | 0.000     | 0.000    |
| Initial Stored Volume                   | 0.000     | 0.000    |
| Final Stored Volume                     | 0.000     | 0.000    |

-0.084

Continuity Error (%) .....

```
*******
Time-Step Critical Elements
******
Link C2 (62.44%)
*****
Highest Flow Instability Indexes
*****
All links are stable.
*******
Most Frequent Nonconverging Nodes
*******
Node Clark Street (0.14%)
Node HWY26 (0.14%)
Node DCBMH20 (0.03%)
Node DCBMH07 (0.03%)
Node DCBMH16 (0.03%)
******
Routing Time Step Summary
*******
                          0.50 sec
Minimum Time Step
Average Time Step
                          3.49 sec
Maximum Time Step
                          5.00 sec
% of Time in Steady State
                          0.00
Average Iterations per Step:
                          2.01
% of Steps Not Converging :
                          0.14
Time Step Frequencies
   5.000 - 3.155 sec
                         52.07 %
   3.155 - 1.991 sec
                         36.21 %
   1.991 - 1.256 sec
                          7.81 %
   1.256 - 0.792 sec
                          2.77 %
```

0.792 - 0.500 sec

1.13 %

| Subcatchment | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Imperv<br>Runoff<br>mm | Perv<br>Runoff<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|--------------|-----------------------|----------------------|---------------------|----------------------|------------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| A1           | 133.10                | 0.00                 | 0.00                | 52.46                | 1.97                   | 78.96                | 80.93                 | 0.43                        | 0.22                  | 0.608           |
| A10          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.28                 | 0.00                 | 131.28                | 0.04                        | 0.01                  | 0.986           |
| A11          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.25                 | 0.00                 | 131.25                | 0.06                        | 0.02                  | 0.986           |
| A12          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.25                 | 0.00                 | 131.25                | 0.05                        | 0.02                  | 0.986           |
| A13          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.25                 | 0.00                 | 131.25                | 0.04                        | 0.02                  | 0.986           |
| A14          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.31                 | 0.00                 | 131.31                | 0.07                        | 0.03                  | 0.987           |
| A15          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.29                 | 0.00                 | 131.29                | 0.06                        | 0.02                  | 0.986           |
| A16          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.27                 | 0.00                 | 131.27                | 0.05                        | 0.02                  | 0.986           |
| A17          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.25                 | 0.00                 | 131.25                | 0.04                        | 0.02                  | 0.986           |
| A18          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.32                 | 0.00                 | 131.32                | 0.07                        | 0.03                  | 0.987           |
| A19          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.30                 | 0.00                 | 131.30                | 0.06                        | 0.02                  | 0.986           |
| A2           | 133.10                | 0.00                 | 0.00                | 54.53                | 5.24                   | 78.56                | 78.56                 | 1.05                        | 0.26                  | 0.590           |
| A20          | 133.10                | 0.00                 | 0.00                | 12.34                | 98.41                  | 21.03                | 119.44                | 0.25                        | 0.11                  | 0.897           |
| A21          | 133.10                | 0.00                 | 0.00                | 42.75                | 23.61                  | 66.51                | 90.12                 | 0.16                        | 0.06                  | 0.677           |
| A22          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.49                 | 0.00                 | 131.49                | 0.19                        | 0.07                  | 0.988           |
| A23          | 133.10                | 0.00                 | 0.00                | 9.86                 | 104.92                 | 16.81                | 121.73                | 0.03                        | 0.01                  | 0.915           |
| A24          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.30                 | 0.00                 | 131.30                | 0.04                        | 0.02                  | 0.986           |
| A25          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.46                 | 0.00                 | 131.46                | 0.05                        | 0.02                  | 0.988           |
| A26          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.48                 | 0.00                 | 131.48                | 0.06                        | 0.02                  | 0.988           |
| A27          | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.47                 | 0.00                 | 131.47                | 0.06                        | 0.02                  | 0.988           |
| A3           | 133.10                | 0.00                 | 0.00                | 2.47                 | 124.91                 | 4.21                 | 129.12                | 0.30                        | 0.11                  | 0.970           |
| A4           | 133.10                | 0.00                 | 0.00                | 2.47                 | 124.83                 | 4.20                 | 129.03                | 0.20                        | 0.08                  | 0.969           |
| A5           | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.37                 | 0.00                 | 131.37                | 0.14                        | 0.05                  | 0.987           |
| A6           | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.40                 | 0.00                 | 131.40                | 0.16                        | 0.06                  | 0.987           |
| A7           | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.31                 | 0.00                 | 131.31                | 0.05                        | 0.02                  | 0.987           |
| A8           | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.30                 | 0.00                 | 131.30                | 0.06                        | 0.02                  | 0.986           |
| A9           | 133.10                | 0.00                 | 0.00                | 0.00                 | 131.42                 | 0.00                 | 131.42                | 0.07                        | 0.03                  | 0.987           |

|              |          | Average | Maximum | Maximum | Time | of Max | Reported  |
|--------------|----------|---------|---------|---------|------|--------|-----------|
|              |          | Depth   | Depth   | HGL     | Occu | rrence | Max Depth |
| Node         | Туре     | Meters  | Meters  | Meters  | days | hr:min | Meters    |
| DCB01        | JUNCTION | 0.03    | 0.65    | 186.08  | 0    | 11:53  | 0.46      |
| DCB09        | JUNCTION | 0.01    | 0.20    | 185.55  | 0    | 12:00  | 0.20      |
| DCB13        | JUNCTION | 0.01    | 0.23    | 185.66  | 0    | 11:55  | 0.22      |
| DCB17        | JUNCTION | 0.02    | 0.19    | 185.73  | 0    | 11:53  | 0.18      |
| DCBMH02      | JUNCTION | 0.03    | 0.65    | 186.04  | 0    | 11:53  | 0.47      |
| DCBMH03      | JUNCTION | 0.03    | 0.59    | 185.88  | 0    | 11:53  | 0.47      |
| DCBMH04      | JUNCTION | 0.04    | 0.53    | 185.77  | 0    | 11:53  | 0.46      |
| DCBMH05      | JUNCTION | 0.04    | 0.49    | 185.58  | 0    | 12:00  | 0.49      |
| DCBMH06      | JUNCTION | 0.05    | 0.69    | 185.53  | 0    | 12:00  | 0.69      |
| DCBMH07      | JUNCTION | 0.07    | 0.78    | 185.52  | 0    | 12:01  | 0.78      |
| DCBMH10      | JUNCTION | 0.02    | 0.33    | 185.54  | 0    | 12:00  | 0.33      |
| DCBMH11      | JUNCTION | 0.03    | 0.50    | 185.52  | 0    | 12:00  | 0.50      |
| DCBMH12      | JUNCTION | 0.04    | 0.65    | 185.52  | 0    | 12:00  | 0.65      |
| DCBMH14      | JUNCTION | 0.02    | 0.35    | 185.65  | 0    | 11:54  | 0.34      |
| DCBMH15      | JUNCTION | 0.02    | 0.63    | 185.82  | 0    | 11:53  | 0.43      |
| DCBMH16      | JUNCTION | 0.03    | 0.70    | 185.73  | 0    | 11:53  | 0.56      |
| DCBMH18      | JUNCTION | 0.02    | 0.22    | 185.63  | 0    | 11:55  | 0.22      |
| DCBMH19      | JUNCTION | 0.03    | 0.44    | 185.61  | 0    | 12:00  | 0.43      |
| DCBMH20      | JUNCTION | 0.03    | 0.56    | 185.59  | 0    | 11:57  | 0.56      |
| DCBMH22      | JUNCTION | 0.06    | 0.76    | 185.55  | 0    | 12:00  | 0.76      |
| DCBMH23      | JUNCTION | 0.12    | 0.89    | 185.51  | 0    | 12:01  | 0.89      |
| DCBMH24      | JUNCTION | 0.04    | 0.55    | 185.51  | 0    | 12:01  | 0.55      |
| DCBMH25      | JUNCTION | 0.07    | 0.76    | 185.50  | 0    | 12:02  | 0.76      |
| J11          | JUNCTION | 0.00    | 0.00    | 185.76  | 0    | 00:00  | 0.00      |
| J12          | JUNCTION | 0.03    | 0.20    | 186.20  | 0    | 11:56  | 0.20      |
| J2           | JUNCTION | 0.02    | 0.23    | 186.73  | 0    | 11:54  | 0.23      |
| J7           | JUNCTION | 0.04    | 0.25    | 182.77  | 0    | 12:01  | 0.25      |
| MH08         | JUNCTION | 0.10    | 0.83    | 185.51  | 0    | 12:02  | 0.83      |
| MH21         | JUNCTION | 0.04    | 0.68    | 185.57  | 0    | 12:00  | 0.68      |
| OGS1         | JUNCTION | 0.19    | 1.02    | 185.50  | 0    | 12:02  | 1.02      |
| OGS2         | JUNCTION | 0.13    | 0.92    | 185.50  | 0    | 12:02  | 0.92      |
| Clark_Street | OUTFALL  | 0.00    | 0.00    | 185.75  | 0    | 00:00  | 0.00      |
| HWY26        | OUTFALL  | 0.02    | 0.20    | 182.71  | 0    | 12:01  | 0.20      |
| SWMF         | STORAGE  | 0.49    | 1.50    | 185.50  | 0    | 12:03  | 1.50      |

| Node Type        | Maximum<br>Lateral<br>Inflow<br>CMS | Maximum<br>Total<br>Inflow<br>CMS | 0ccu | of Max<br>arrence<br>hr:min | Lateral<br>Inflow<br>Volume<br>10^6 ltr | Total<br>Inflow<br>Volume<br>10^6 ltr | Flow<br>Balance<br>Error<br>Percent |
|------------------|-------------------------------------|-----------------------------------|------|-----------------------------|-----------------------------------------|---------------------------------------|-------------------------------------|
| DCB01 JUNCTION   | 0.072                               | 0.072                             | 0    | 11:54                       | 0.194                                   | 0.194                                 | 0.004                               |
| DCB09 JUNCTION   | 0.023                               | 0.023                             | 0    | 11:54                       | 0.0595                                  | 0.0595                                | -0.027                              |
| DCB13 JUNCTION   |                                     | 0.024                             | 0    | 11:54                       | 0.0632                                  | 0.0632                                | -0.014                              |
| DCB17 JUNCTION   | 0.060                               | 0.060                             | 0    | 11:54                       | 0.156                                   | 0.156                                 | 0.007                               |
| DCBMH02 JUNCTION | 0.011                               | 0.084                             | 0    | 11:54                       | 0.0255                                  | 0.219                                 | -0.010                              |
| DCBMH03 JUNCTION | 0.015                               | 0.101                             | 0    | 11:54                       | 0.0401                                  | 0.259                                 | -0.019                              |
| DCBMH04 JUNCTION | 0.055                               | 0.156                             | 0    | 11:54                       | 0.142                                   | 0.402                                 | 0.305                               |
| DCBMH05 JUNCTION | 0.021                               | 0.177                             | 0    | 11:54                       | 0.0545                                  | 0.455                                 | 0.088                               |
| DCBMH06 JUNCTION | 0.024                               | 0.192                             | 0    | 11:54                       | 0.0638                                  | 0.518                                 | -0.337                              |
| DCBMH07 JUNCTION | 0.022                               | 0.216                             | 0    | 11:54                       | 0.0587                                  | 0.579                                 | -0.024                              |
| DCBMH10 JUNCTION | 0.021                               | 0.044                             | 0    | 11:54                       | 0.0549                                  | 0.114                                 | 0.302                               |
| DCBMH11 JUNCTION | 0.017                               | 0.059                             | 0    | 11:53                       | 0.0431                                  | 0.157                                 | -0.117                              |
| DCBMH12 JUNCTION | 0.027                               | 0.085                             | 0    | 11:53                       | 0.0698                                  | 0.227                                 | -0.090                              |
| DCBMH14 JUNCTION | 0.020                               | 0.045                             | 0    | 11:53                       | 0.0531                                  | 0.116                                 | -0.011                              |
| DCBMH15 JUNCTION | 0.016                               | 0.058                             | 0    | 11:52                       | 0.0427                                  | 0.159                                 | 0.133                               |
| DCBMH16 JUNCTION | 0.027                               | 0.080                             | 0    | 11:55                       | 0.0696                                  | 0.228                                 | 0.013                               |
| DCBMH18 JUNCTION | 0.018                               | 0.078                             | 0    | 11:53                       | 0.0464                                  | 0.203                                 | 0.393                               |
| DCBMH19 JUNCTION | 0.022                               | 0.100                             | 0    | 11:54                       | 0.0564                                  | 0.258                                 | -0.316                              |
| DCBMH20 JUNCTION | 0.025                               | 0.118                             | 0    | 11:54                       | 0.0659                                  | 0.325                                 | -0.035                              |
| DCBMH22 JUNCTION | 0.014                               | 0.210                             | 0    | 11:54                       | 0.0351                                  | 0.589                                 | -0.082                              |
| DCBMH23 JUNCTION | 0.022                               | 0.309                             | 0    | 11:54                       | 0.0565                                  | 0.873                                 | -0.051                              |
| DCBMH24 JUNCTION | 0.115                               | 0.115                             | 0    | 11:54                       | 0.298                                   | 0.298                                 | 0.082                               |
| DCBMH25 JUNCTION | 0.078                               | 0.190                             | 0    | 11:54                       | 0.2                                     | 0.498                                 | -0.162                              |
| J11 JUNCTION     | 0.224                               | 0.224                             | 0    | 11:54                       | 0.43                                    | 0.43                                  | 0.000                               |
| J12 JUNCTION     | 0.000                               | 0.103                             | 0    | 11:55                       | 0                                       | 0.251                                 | 0.179                               |
| J2 JUNCTION      | 0.106                               | 0.106                             | 0    | 11:54                       | 0.251                                   | 0.251                                 | -0.170                              |
| J7 JUNCTION      | 0.256                               | 0.692                             | 0    | 12:01                       | 1.05                                    | 3.41                                  | 0.000                               |
| MH08 JUNCTION    | 0.000                               | 0.214                             | 0    | 11:54                       | 0                                       | 0.579                                 | -0.014                              |
| MH21 JUNCTION    | 0.000                               | 0.117                             | 0    | 11:54                       | 0                                       | 0.325                                 | -0.045                              |
| OGS1 JUNCTION    | 0.000                               | 0.522                             | 0    | 11:54                       | 0                                       | 1.45                                  | -0.043                              |

| OGS2         | JUNCTION | 0.000 | 0.187 | 0 | 11:54 | 0     | 0.499 | -0.119 |
|--------------|----------|-------|-------|---|-------|-------|-------|--------|
| Clark_Street | OUTFALL  | 0.000 | 0.224 | 0 | 11:54 | 0     | 0.43  | 0.000  |
| HWY26        | OUTFALL  | 0.000 | 0.692 | 0 | 12:01 | 0     | 3.41  | 0.000  |
| SWMF         | STORAGE  | 0.056 | 0.850 | 0 | 11:54 | 0.158 | 2.36  | -0.000 |

Surcharging occurs when water rises above the top of the highest conduit.

\_\_\_\_\_

| Node    | Туре     |       | Max. Height<br>Above Crown<br>Meters | Below Rim |
|---------|----------|-------|--------------------------------------|-----------|
| DCB01   | JUNCTION | 0.05  | 0.274                                | 0.761     |
| DCBMH02 | JUNCTION | 0.07  | 0.272                                | 0.523     |
| DCBMH03 | JUNCTION | 0.14  | 0.217                                | 0.968     |
| DCBMH04 | JUNCTION | 0.15  | 0.157                                | 0.868     |
| DCBMH05 | JUNCTION | 0.12  | 0.044                                | 1.146     |
| DCBMH06 | JUNCTION | 0.22  | 0.088                                | 1.192     |
| DCBMH07 | JUNCTION | 0.38  | 0.176                                | 1.224     |
| DCBMH10 | JUNCTION | 0.09  | 0.033                                | 0.907     |
| DCBMH11 | JUNCTION | 0.29  | 0.123                                | 0.727     |
| DCBMH12 | JUNCTION | 0.42  | 0.196                                | 0.604     |
| DCBMH14 | JUNCTION | 0.11  | 0.054                                | 0.886     |
| DCBMH15 | JUNCTION | 0.20  | 0.333                                | 0.477     |
| DCBMH16 | JUNCTION | 0.31  | 0.317                                | 0.393     |
| DCBMH20 | JUNCTION | 0.20  | 0.113                                | 1.052     |
| DCBMH22 | JUNCTION | 0.57  | 0.307                                | 0.388     |
| DCBMH23 | JUNCTION | 0.61  | 0.290                                | 0.400     |
| DCBMH24 | JUNCTION | 0.26  | 0.099                                | 0.651     |
| DCBMH25 | JUNCTION | 0.36  | 0.160                                | 0.460     |
| J11     | JUNCTION | 48.00 | 0.000                                | 0.240     |
| MH08    | JUNCTION | 0.48  | 0.229                                | 1.371     |
| MH21    | JUNCTION | 0.41  | 0.228                                | 1.002     |
| OGS1    | JUNCTION | 0.58  | 0.275                                | 0.395     |
| OGS2    | JUNCTION | 0.37  | 0.169                                | 0.521     |

\*\*\*\*\*

No nodes were flooded.

|              | Average | Avg  | Evap | Exfil | Maximum | Max  | Time of Max | Maximum |
|--------------|---------|------|------|-------|---------|------|-------------|---------|
|              | Volume  | Pcnt | Pcnt | Pcnt  | Volume  | Pcnt | Occurrence  | Outflow |
| Storage Unit | 1000 m³ | Full | Loss | Loss  | 1000 m³ | Full | days hr:min | CMS     |
|              |         |      |      |       |         |      |             |         |
| SWMF         | 0.177   | 14.8 | 0.0  | 0.0   | 0.798   | 66.9 | 0 12:03     | 0.450   |

\*\*\*\*\*\*

|              | Flow<br>Freq   | Avg<br>Flow | Max<br>Flow | Total<br>Volume |
|--------------|----------------|-------------|-------------|-----------------|
| Outfall Node | Pcnt           | CMS         | CMS         | 10^6 ltr        |
| Clark_Street | 63.01<br>91.88 | 0.009       | 0.224       | 0.430           |
| System       | 77.45          | 0.048       | 0.876       | 3.844           |

\*\*\*\*\*\*

Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full

| Link  | Туре    | CMS   | days | hr:min | m/sec | Flow | Depth |
|-------|---------|-------|------|--------|-------|------|-------|
| C1    | CONDUIT | 0.112 | 0    | 11:54  | 0.90  | 0.55 | 1.00  |
| C1_2  | CONDUIT | 0.692 | 0    | 12:01  | 1.26  | 0.19 | 0.15  |
| C10   | CONDUIT | 0.310 | 0    | 11:54  | 1.09  | 0.74 | 1.00  |
| C11   | DUMMY   |       |      | 11:54  |       |      |       |
| C13   | CONDUIT | 0.522 | 0    | 11:54  | 1.18  | 0.89 | 1.00  |
| C14   | CONDUIT |       |      | 11:53  | 0.75  | 0.37 | 0.88  |
| C15   | CONDUIT | 0.056 | 0    | 11:55  | 1.10  | 0.82 | 1.00  |
| C16   | CONDUIT | 0.042 | 0    | 11:52  | 0.93  | 0.47 | 1.00  |
| C17   | CONDUIT |       |      | 11:55  | 0.91  | 0.66 | 1.00  |
| C18   | CONDUIT | 0.023 | 0    | 11:54  | 0.66  | 0.34 | 0.83  |
| C19   | CONDUIT | 0.042 | 0    | 11:52  | 1.01  | 0.61 | 1.00  |
| C2    | CONDUIT |       | 0    | 11:54  | 0.69  | 0.56 | 1.00  |
| C20   | CONDUIT | 0.058 | 0    | 11:53  | 0.92  | 0.46 | 1.00  |
| C21   | CONDUIT | 0.084 | 0    | 11:53  | 0.54  | 0.41 | 1.00  |
| C22   | CONDUIT |       |      | 11:54  | 0.82  | 0.73 | 1.00  |
| C22_1 | CONDUIT | 0.103 | 0    | 11:55  | 0.54  | 0.23 | 0.53  |
| C22_4 | CONDUIT |       | 0    | 11:56  | 0.72  | 0.19 | 0.44  |
| C23   | CONDUIT | 0.085 | 0    | 11:54  | 0.77  | 0.90 | 1.00  |
| C24   | CONDUIT | 0.101 | 0    | 11:54  | 0.92  | 1.07 | 1.00  |
| C25   | CONDUIT | 0.156 | 0    | 11:54  | 1.46  | 1.62 | 1.00  |
| C26   | CONDUIT |       |      | 11:54  |       | 1.05 | 1.00  |
| C27   | CONDUIT |       |      | 11:54  | 0.69  | 0.58 | 1.00  |
| C28   | CONDUIT |       | 0    | 11:54  | 0.76  | 0.64 | 1.00  |
| C29   | CONDUIT | 0.215 | 0    | 11:54  | 0.76  | 0.60 | 1.00  |
| C3    | CONDUIT | 0.185 | 0    | 11:54  | 0.50  | 0.23 | 1.00  |
| C5    | CONDUIT | 0.060 | 0    | 11:53  | 1.01  | 0.48 | 0.53  |
| C6    | CONDUIT |       |      | 11:54  | 1.20  | 0.63 | 0.75  |
| C7_1  | CONDUIT |       |      | 11:55  | 1.02  | 0.47 | 0.98  |
| C7_2  | CONDUIT |       |      | 11:54  | 1.03  | 0.59 | 1.00  |
| C8    | CONDUIT | 0.117 | 0    | 11:54  | 0.74  | 0.57 |       |
| C9    | CONDUIT | 0.210 | 0    | 11:54  | 1.32  | 1.05 | 1.00  |
| C12   | DUMMY   | 0.450 | 0    | 12:03  |       |      |       |

\*\*\*\*\*\*\*

Flow Classification Summary

.\_\_\_\_\_

|         | Adjusted |      |      | Fract | ion of | Time | in Flo | w Clas | s    |       |
|---------|----------|------|------|-------|--------|------|--------|--------|------|-------|
|         | /Actual  |      | Up   | Down  | Sub    | Sup  | Up     | Down   | Norm | Inlet |
| Conduit | Length   | Dry  | Dry  | Dry   | Crit   | Crit | Crit   | Crit   | Ltd  | Ctrl  |
| C1      | 1.00     | 0.03 | 0.00 | 0.00  | 0.09   | 0.00 | 0.00   | 0.88   | 0.06 | 0.00  |
| C1 2    | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.00 | 0.00  |
| C10     | 1.00     | 0.03 | 0.00 | 0.00  | 0.33   | 0.00 | 0.00   | 0.64   | 0.01 | 0.00  |
| C13     | 1.00     | 0.03 | 0.00 | 0.00  | 0.39   | 0.00 | 0.00   | 0.58   | 0.01 | 0.00  |
| C14     | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.52 | 0.00  |
| C15     | 1.00     | 0.03 | 0.00 | 0.00  | 0.02   | 0.00 | 0.00   | 0.96   | 0.00 | 0.00  |
| C16     | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.96 | 0.00  |
| C17     | 1.00     | 0.03 | 0.00 | 0.00  | 0.05   | 0.00 | 0.00   | 0.92   | 0.03 | 0.00  |
| C18     | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.96 | 0.00  |
| C19     | 1.00     | 0.03 | 0.00 | 0.00  | 0.02   | 0.00 | 0.00   | 0.95   | 0.01 | 0.00  |
| C2      | 1.00     | 0.03 | 0.00 | 0.00  | 0.23   | 0.00 | 0.00   | 0.74   | 0.00 | 0.00  |
| C20     | 1.00     | 0.03 | 0.00 | 0.00  | 0.03   | 0.00 | 0.00   | 0.94   | 0.01 | 0.00  |
| C21     | 1.00     | 0.03 | 0.00 | 0.00  | 0.28   | 0.00 | 0.00   | 0.69   | 0.23 | 0.00  |
| C22     | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.95 | 0.00  |
| C22_1   | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.84 | 0.00  |
| C22_4   | 1.00     | 0.03 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00   | 0.97   | 0.00 | 0.00  |
| C23     | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.68 | 0.00  |
| C24     | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.96 | 0.00  |
| C25     | 1.00     | 0.03 | 0.00 | 0.00  | 0.01   | 0.00 | 0.00   | 0.96   | 0.00 | 0.00  |
| C26     | 1.00     | 0.03 | 0.00 | 0.00  | 0.02   | 0.00 | 0.00   | 0.95   | 0.01 | 0.00  |
| C27     | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.65 | 0.00  |
| C28     | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.56 | 0.00  |
| C29     | 1.00     | 0.03 | 0.00 | 0.00  | 0.31   | 0.00 | 0.00   | 0.66   | 0.02 | 0.00  |
| C3      | 1.00     | 0.03 | 0.00 | 0.00  | 0.40   | 0.00 | 0.00   | 0.57   | 0.07 | 0.00  |
| C5      | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.96 | 0.00  |
| C6      | 1.00     | 0.03 | 0.00 | 0.00  | 0.01   | 0.00 | 0.00   | 0.96   | 0.01 | 0.00  |
| C7_1    | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.95 | 0.00  |
| C7_2    | 1.00     | 0.03 | 0.00 | 0.00  | 0.97   | 0.00 | 0.00   | 0.00   | 0.14 | 0.00  |
| C8      | 1.00     | 0.03 | 0.02 | 0.00  | 0.95   | 0.00 | 0.00   | 0.00   | 0.93 | 0.00  |
| C9      | 1.00     | 0.03 | 0.00 | 0.00  | 0.28   | 0.00 | 0.00   | 0.69   | 0.15 | 0.00  |

\*\*\*\*\*\*

Conduit Surcharge Summary

.\_\_\_\_\_

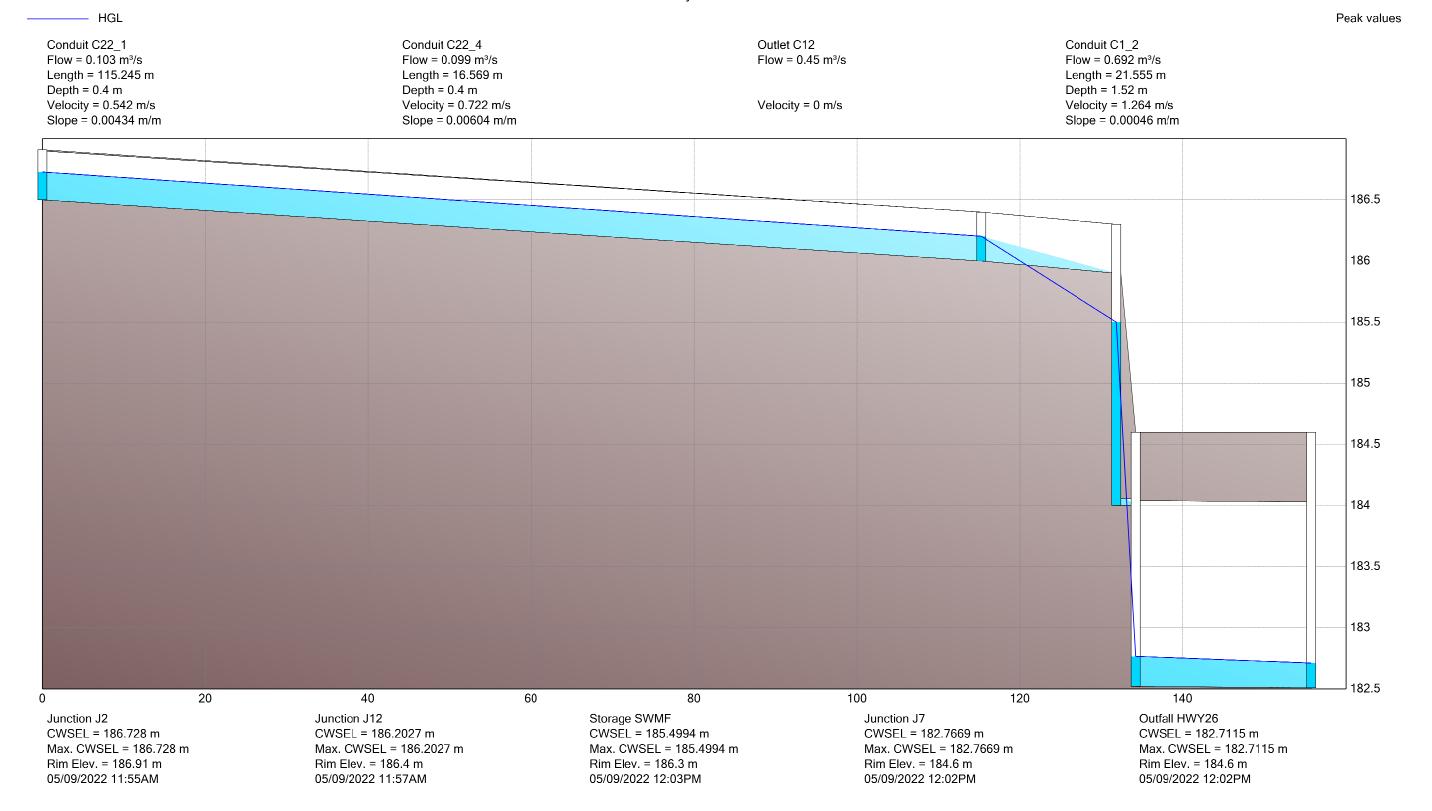
| Conduit | Both Ends | Upstream | Dnstream | Hours<br>Above Full<br>Normal Flow | Capacity<br>Limited |
|---------|-----------|----------|----------|------------------------------------|---------------------|
| C1      |           |          |          | 0.01                               |                     |
| C10     | 0.61      | 0.61     | 0.70     | 0.01                               | 0.01                |
| C13     | 0.58      | 0.58     | 0.64     | 0.01                               | 0.01                |
| C14     | 0.01      | 0.01     | 0.11     | 0.01                               | 0.01                |
| C15     | 0.19      | 0.19     | 0.31     | 0.01                               | 0.01                |
| C16     | 0.11      | 0.11     | 0.20     | 0.01                               | 0.01                |
| C17     | 0.32      | 0.32     | 0.57     | 0.01                               | 0.01                |
| C18     | 0.01      | 0.01     | 0.09     | 0.01                               | 0.01                |
| C19     | 0.09      | 0.09     | 0.29     | 0.01                               | 0.01                |
| C2      | 0.36      | 0.36     | 0.37     | 0.01                               | 0.01                |
| C20     | 0.30      | 0.30     | 0.43     | 0.01                               | 0.01                |
| C21     | 0.42      | 0.42     | 0.79     | 0.01                               | 0.01                |
| C22     | 0.05      | 0.05     | 0.07     | 0.01                               | 0.01                |
| C23     | 0.07      | 0.07     | 0.14     | 0.01                               | 0.01                |
| C24     | 0.14      | 0.14     | 0.15     | 0.02                               | 0.01                |
| C25     | 0.11      | 0.15     | 0.13     | 0.19                               | 0.09                |
| C26     | 0.12      | 0.12     | 0.22     | 0.02                               | 0.01                |
| C27     | 0.22      | 0.22     | 0.38     | 0.01                               | 0.01                |
| C28     | 0.38      | 0.38     | 0.48     | 0.01                               | 0.01                |
| C29     | 0.48      | 0.48     | 0.58     | 0.01                               | 0.01                |
| C3      | 0.37      | 0.37     | 0.64     | 0.01                               | 0.01                |
| C7_1    | 0.01      | 0.01     | 0.20     | 0.01                               | 0.01                |
| C7_2    | 0.20      | 0.20     | 0.41     | 0.01                               | 0.01                |
| C8      | 0.41      | 0.41     | 0.58     | 0.01                               | 0.01                |
| C9      | 0.58      | 0.58     | 0.79     | 0.03                               | 0.03                |

Analysis begun on: Wed Dec 13 10:55:17 2023 Analysis ended on: Wed Dec 13 10:55:18 2023

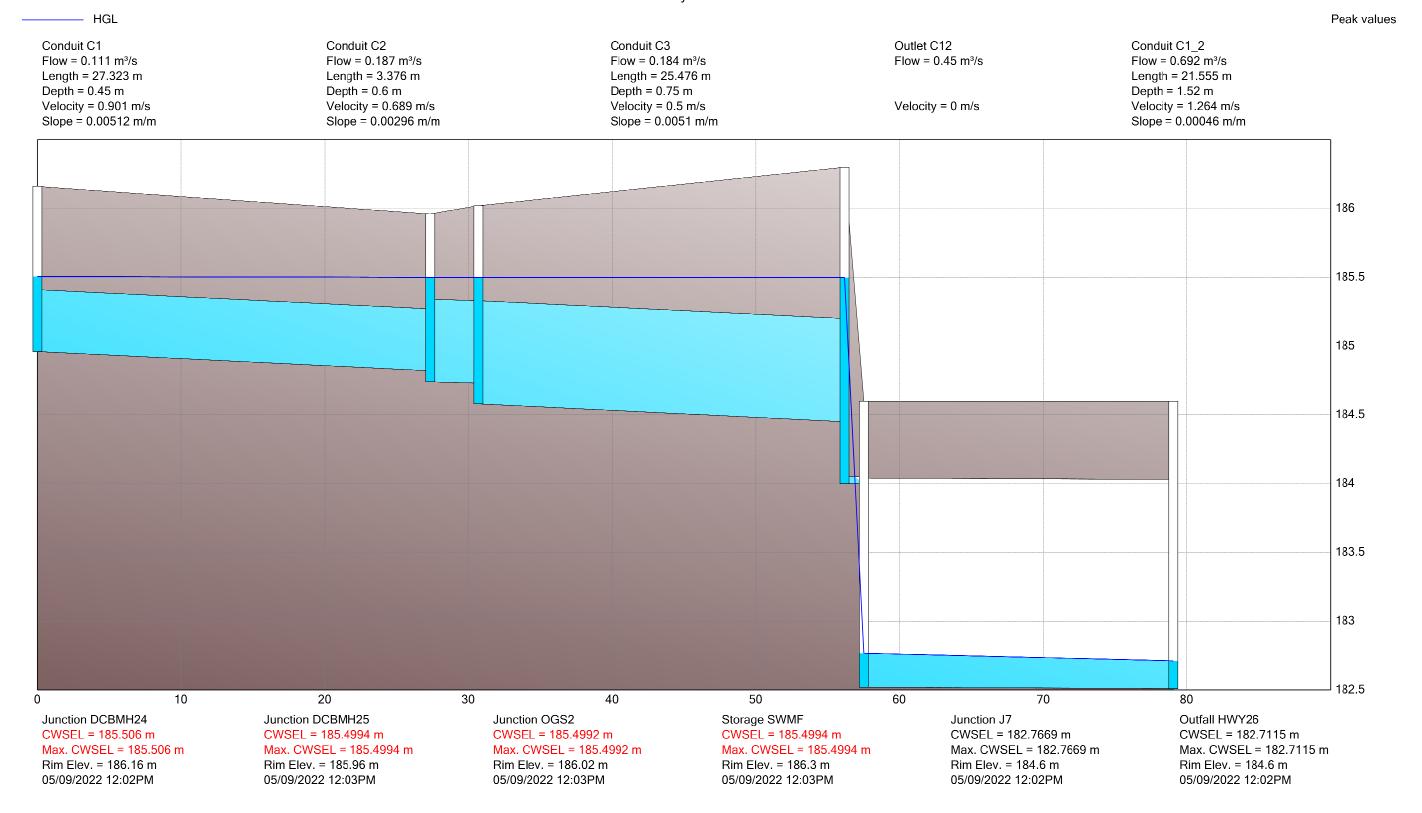
Total elapsed time: 00:00:01

# Profile 1 DCB17 to Hwy 26 Outlet

|            |                                                                                |                                                 |                                                                               |                                                                                          |                                                                                           | 100,1 000 010                                                          |                                                           |                                                               |                                                                               |                                                                                         |                                                                              |
|------------|--------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|            | HGL                                                                            |                                                 |                                                                               |                                                                                          |                                                                                           |                                                                        |                                                           |                                                               |                                                                               |                                                                                         | Peak values                                                                  |
| Links:     | C1_2<br>Q=0.692 m³/s<br>L=21.555 m<br>D=1.52 m<br>V=1.264 m/s<br>S=0.00046 m/m | C12<br>Q=0.45 m³/s<br>V=0 m/s                   | C13<br>Q=0.515 m³/s<br>L=10.911 m<br>D=0.75 m<br>V=1.166 m/s<br>S=0.00275 m/m | C10<br>Q=0.307 m <sup>3</sup> /s<br>L=8.727 m<br>D=0.6 m<br>V=1.087 m/s<br>S=0.00458 m/m | C9<br>Q=0.209 m <sup>3</sup> /s<br>L=18.108 m<br>D=0.45 m<br>V=1.313 m/s<br>S=0.00497 m/n | C8<br>Q=0.117 m<br>L=19.254 m<br>D=0.45 m<br>V=0.736 m/<br>n S=0.00519 | L=28.9<br>D=0.45<br>S V=1.03                              | 17 m³/s G<br>98 m L<br>5 m E<br>34 m/s V                      | 27_1<br>2=0.093 m³/s<br>=28.865 m<br>)=0.45 m<br>/=1.024 m/s<br>6=0.00485 m/m | C6<br>Q=0.078 m <sup>3</sup> /s<br>L=32.03 m<br>D=0.375 m<br>V=1.187 m/s<br>S=0.005 m/m | C5<br>Q=0.06 m³/s<br>L=25.828 m<br>D=0.375 m<br>V=1.006 m/s<br>S=0.00503 m/m |
|            |                                                                                |                                                 |                                                                               |                                                                                          |                                                                                           |                                                                        |                                                           |                                                               |                                                                               |                                                                                         | 187                                                                          |
|            |                                                                                |                                                 |                                                                               |                                                                                          |                                                                                           |                                                                        |                                                           |                                                               |                                                                               |                                                                                         | 186.5                                                                        |
|            |                                                                                |                                                 |                                                                               |                                                                                          |                                                                                           |                                                                        |                                                           |                                                               |                                                                               |                                                                                         | 185.5                                                                        |
|            |                                                                                |                                                 |                                                                               |                                                                                          |                                                                                           |                                                                        |                                                           |                                                               |                                                                               |                                                                                         | 185                                                                          |
|            |                                                                                |                                                 |                                                                               |                                                                                          |                                                                                           |                                                                        |                                                           |                                                               |                                                                               |                                                                                         | 184.5                                                                        |
|            |                                                                                |                                                 |                                                                               |                                                                                          |                                                                                           |                                                                        |                                                           |                                                               |                                                                               |                                                                                         | 183.5                                                                        |
|            |                                                                                |                                                 | 40                                                                            |                                                                                          |                                                                                           |                                                                        | 100                                                       | 110                                                           | 400                                                                           | 100                                                                                     | 183                                                                          |
| 0<br>Nodes | 20<br>: HWY26<br>H=182.7115 m<br>M=182.7115 m<br>R=184.6 m                     | J7<br>H=182.7669 m<br>M=182.7669 m<br>R=184.6 m | SWMF<br>H=185.4994 m<br>M=185.4994 m<br>R=186.3 m                             | OGS1<br>H=185.5033 m<br>M=185.5033 m<br>R=185.9 m                                        | B0<br>DCBMH23<br>H=185.5089 m<br>M=185.5089 m<br>R=185.91 m                               | 100<br>DCBMH22<br>H=185.5504 m<br>M=185.5504 m<br>R=185.94 m           | 120<br>MH21<br>H=185.5661 m<br>M=185.5661 m<br>R=186.57 m | 140<br>DCBMH20<br>H=185.5902 m<br>M=185.5902 m<br>R=186.645 m | 160<br>DCBMH19<br>H=185.6026<br>M=185.6026<br>R=186.72 m                      | m M=185.6261 m                                                                          | DCB17<br>H=185.7248 m<br>M=185.7248 m<br>R=187.22 m                          |


# Profile 2 DCB13 to Hwy 26 Outlet

| HGL                                                                            |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | Peak v                                                                         |
| S: C14<br>Q=0.024 m³/s<br>L=27.79 m<br>D=0.3 m<br>V=0.734 m/s<br>S=0.00468 m/m | C16<br>Q=0.04 m³/s<br>L=22.135 m<br>D=0.3 m<br>V=0.931 m/s<br>S=0.00497 m/m | C15<br>Q=0.055 m³/s<br>L=15.947 m<br>D=0.3 m<br>V=1.065 m/s<br>S=0.00502 m/m | C17<br>Q=0.079 m³/s<br>L=33.094 m<br>D=0.375 m<br>V=0.91 m/s<br>S=0.00483 m/m | C9<br>Q=0.209 m³/s<br>L=18.108 m<br>D=0.45 m<br>V=1.313 m/s<br>S=0.00497 m/m | C10<br>Q=0.307 m³/s<br>L=8.727 m<br>D=0.6 m<br>V=1.087 m/s<br>S=0.00458 m/m | C13<br>Q=0.515 m³/s<br>L=10.911 m<br>D=0.75 m<br>V=1.166 m/s<br>S=0.00275 m/m | C12<br>Q=0.45 m³/s<br>V=0 m/s             | C1_2<br>Q=0.692 m³/s<br>L=21.555 m<br>D=1.52 m<br>V=1.264 m/s<br>S=0.00046 m/m |
| S=0.00468 m/m                                                                  | S=0.00497 m/m                                                               | S=0.00502 m/m                                                                | S=0.00483 m/m                                                                 | S=0.00497 m/m                                                                | S=0.00458 m/m                                                               | S=0.00275 m/m                                                                 | V-0 111/3                                 | S=0.00046 m/m                                                                  |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 186                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 186                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 185                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 185                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 184                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 184                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 100                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 183                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 183                                                                            |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           |                                                                                |
|                                                                                |                                                                             |                                                                              |                                                                               |                                                                              |                                                                             |                                                                               |                                           | 183                                                                            |
|                                                                                | 20 4(                                                                       |                                                                              |                                                                               |                                                                              | 120<br>OGS1                                                                 | 140<br>SWMF                                                                   | 160                                       | 183                                                                            |
| )<br>:s: DCB13<br>H=185.653 m<br>M=185.653 m                                   | DCBMH14 [<br>H=185.6405 m                                                   | DCBMH15 DC<br>H=185.6187 m H=                                                | CBMH16 DCBM<br>185.5884 m H=185                                               |                                                                              | OGS1<br>m H=185.5033 m                                                      | SWMF<br>H=185.4994 m                                                          | 160<br>J7<br>H=182.7669 m<br>M=182.7669 m | 183<br>183<br>182<br>HWY26<br>H=182.7115 m<br>M=182.7115 m                     |


# Profile 3 DCB09 to Hwy 26 Outlet

|        | —— HGL                                                                                    |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 | Pea                                                                            | ak values |
|--------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------|-----------|
|        | C18<br>Q=0.023 m <sup>3</sup> /s<br>L=28.194 m<br>D=0.3 m<br>V=0.663 m/s<br>S=0.00497 m/m | C19<br>Q=0.042 m³/s<br>L=21.943 m<br>D=0.3 m<br>V=0.999 m/s<br>S=0.00501 m/m | C20<br>Q=0.054 m³/s<br>L=15.88 m<br>D=0.375 m<br>V=0.909 m/s<br>S=0.00504 m/m | C21<br>Q=0.08<br>L=33.24<br>D=0.45<br>V=0.544<br>S=0.005 | l m³/s<br>m<br>m<br>ŀ m/s                             | C10<br>Q=0.307 m³/s<br>L=8.727 m<br>D=0.6 m<br>V=1.087 m/s<br>S=0.00458 m/m | C13<br>Q=0.515 m <sup>3</sup> /s<br>L=10.911 m<br>D=0.75 m<br>V=1.166 m/s<br>S=0.00275 m/m | C12<br>Q=0.45 m³/s<br>V=0 m/s                   | C1_2<br>Q=0.692 m³/s<br>L=21.555 m<br>D=1.52 m<br>V=1.264 m/s<br>S=0.00046 m/m |           |
|        |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                |           |
|        |                                                                                           |                                                                              | -                                                                             |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                | 186.5     |
|        |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                | 186       |
|        |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                | 185.5     |
|        |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                | 185       |
|        |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                | 184.5     |
|        |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                | 184       |
|        |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                | 183.5     |
|        |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                | 183       |
| -      |                                                                                           |                                                                              |                                                                               |                                                          |                                                       |                                                                             |                                                                                            |                                                 |                                                                                |           |
| 0      | 20                                                                                        |                                                                              | 40                                                                            | 60                                                       | 80                                                    | 100                                                                         | 120                                                                                        | 140                                             |                                                                                | 182.5     |
| Nodes: | DCB09<br>H=185.5452 m<br>M=185.5452 m<br>R=186.76 m                                       | DCBMH10<br>H=185.5417 m<br>M=185.5417 m<br>R=186.45 m                        | DCBMH11<br>H=185.5219 m<br>M=185.5219 m<br>R=186.25 m                         | DCBMH12<br>H=185.5151 m<br>M=185.5151 m<br>R=186.12 m    | DCBMH23<br>H=185.5089 m<br>M=185.5089 m<br>R=185.91 m | OGS1<br>H=185.5033 m<br>M=185.5033 m<br>R=185.9 m                           | SWMF<br>H=185.4994 m<br>M=185.4994 m<br>R=186.3 m                                          | J7<br>H=182.7669 m<br>M=182.7669 m<br>R=184.6 m | HWY26<br>H=182.7115 m<br>M=182.7115 m<br>R=184.6 m                             |           |

# Profile 4 Swale to Hwy 26 Outlet



## Profile 5 DCBMH24 to Hwy 26 Outlet



# Profile 6 DCB01 to Hwy 26 Outlet

|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              | 10091 303                                                                 | Storm                                                 |                                                       |                                                       |                                                         |                                                                          |                                                                                |
|--------|--------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|        | ——— HGL                                                                        |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         |                                                                          | Peak values                                                                    |
| Links: | C1_2<br>Q=0.692 m³/s<br>L=21.555 m<br>D=1.52 m<br>V=1.264 m/s<br>S=0.00046 m/m | C12<br>Q=0.45 m³/s<br>V=0 m/s                   | C13<br>Q=0.515 m³/s<br>L=10.911 m<br>D=0.75 m<br>V=1.166 m/s<br>S=0.00275 m/m | C29<br>Q=0.209 m³/s<br>L=14.809 m<br>D=0.6 m<br>V=0.738 m/s<br>S=0.00338 m/m | C28<br>Q=0.209 m³/s<br>L=20.311 m<br>D=0.6 m<br>V=0.739 m/s<br>S=0.00295 m/m | C27<br>Q=0.188 m³/s<br>L=34.163 m<br>D=0.6 m<br>V=0.68 m/s<br>S=0.00293 m | L=31.396<br>D=0.45 r<br>V=1.269                       | 6 m L=26.<br>m D=0.3<br>m/s V=1.4                     | 358 m L=1<br>375 m D=0<br>463 m/s V=0                 | 0.101 m³/s Q<br>7.357 m L=<br>0.375 m D=<br>0.91 m/s V= | 23<br>=0.085 m³/s<br>=34.083 m<br>=0.375 m<br>=0.767 m/s<br>=0.00293 m/m | C22<br>Q=0.073 m³/s<br>L=12.071 m<br>D=0.375 m<br>V=0.816 m/s<br>S=0.00331 m/m |
|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         |                                                                          | 186.5                                                                          |
|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         |                                                                          | 186                                                                            |
|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         |                                                                          | 185.5                                                                          |
|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         |                                                                          | 185                                                                            |
|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         |                                                                          | 184.5                                                                          |
| -      |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         |                                                                          | 184                                                                            |
|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         | -                                                                        | 183.5                                                                          |
|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         | -                                                                        | 183                                                                            |
|        |                                                                                |                                                 |                                                                               |                                                                              |                                                                              |                                                                           |                                                       |                                                       |                                                       |                                                         |                                                                          | 100 5                                                                          |
| 0      | 20                                                                             | 40                                              | 60                                                                            | 80                                                                           | 100                                                                          | 120                                                                       | 140                                                   | 160                                                   | 180                                                   | 200                                                     | 220                                                                      | 182.5                                                                          |
| Nodes  | : HWY26<br>H=182.7115 m<br>M=182.7115 m<br>R=184.6 m                           | J7<br>H=182.7669 m<br>M=182.7669 m<br>R=184.6 m | SWMF<br>H=185.4994 m<br>M=185.4994 m<br>R=186.3 m                             | OGS1<br>H=185.5033 m<br>M=185.5033 m<br>R=185.9 m                            | MH08<br>H=185.5085 m<br>M=185.5085 m<br>R=186.88 m                           | DCBMH07<br>H=185.5151 m<br>M=185.5151 m<br>R=186.74 m                     | DCBMH06<br>H=185.5268 m<br>M=185.5268 m<br>R=186.72 m | DCBMH05<br>H=185.5824 m<br>M=185.5824 m<br>R=186.73 m | DCBMH04<br>H=185.7025 m<br>M=185.7025 m<br>R=186.64 m | DCBMH03<br>H=185.7622 m<br>M=185.7622 m<br>R=186.85 m   | DCBMH02<br>H=185.8565 m<br>M=185.8565 m<br>R=186.56 m                    | DCB01<br>H=185.8863 m<br>M=185.8863 m<br>R=186.84 m                            |



# CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD BASED ON A FINE PARTICLE SIZE DISTRIBUTION



Project Name:185 Clark StreetEngineer:Capes EngineeringLocation:Blue Mountains, ONContact:Clayton Capes, P.Eng

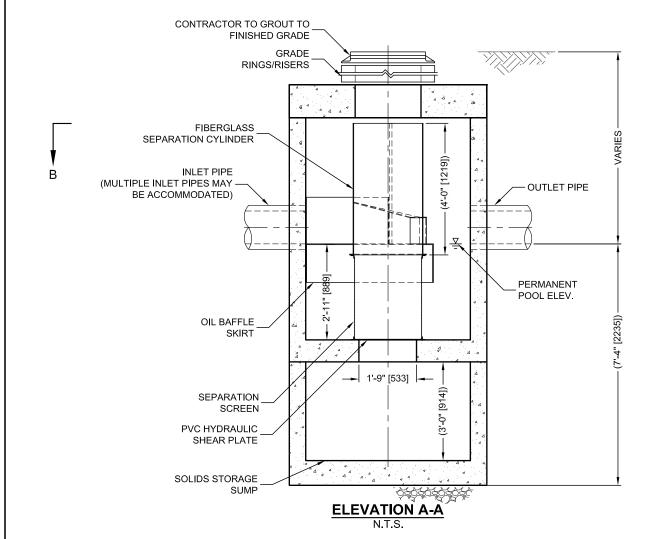
OGS #: 1 Report Date: 15-Aug-22

Area0.920haRainfall Station #198Weighted C0.90Particle Size DistributionFINECDS Model2025CDS Treatment Capacity45I/s

| Rainfall<br>Intensity <sup>1</sup><br>(mm/hr) | Percent<br>Rainfall<br>Volume <sup>1</sup> | Cumulative<br>Rainfall<br>Volume | Total<br>Flowrate<br>(I/s) | <u>Treated</u><br><u>Flowrate (I/s)</u> | Operating<br>Rate (%) | Removal<br>Efficiency (%) | Incremental<br>Removal (%) |
|-----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------|-----------------------------------------|-----------------------|---------------------------|----------------------------|
| 1.0                                           | 10.8%                                      | 21.1%                            | 2.3                        | 2.3                                     | 5.1                   | 97.4                      | 10.5                       |
| 1.5                                           | 10.1%                                      | 31.2%                            | 3.5                        | 3.5                                     | 7.6                   | 96.7                      | 9.7                        |
| 2.0                                           | 8.5%                                       | 39.7%                            | 4.6                        | 4.6                                     | 10.2                  | 95.9                      | 8.1                        |
| 2.5                                           | 6.7%                                       | 46.4%                            | 5.8                        | 5.8                                     | 12.7                  | 95.2                      | 6.4                        |
| 3.0                                           | 6.1%                                       | 52.4%                            | 6.9                        | 6.9                                     | 15.2                  | 94.5                      | 5.7                        |
| 3.5                                           | 4.1%                                       | 56.5%                            | 8.1                        | 8.1                                     | 17.8                  | 93.8                      | 3.8                        |
| 4.0                                           | 4.2%                                       | 60.7%                            | 9.2                        | 9.2                                     | 20.3                  | 93.0                      | 3.9                        |
| 4.5                                           | 3.7%                                       | 64.4%                            | 10.4                       | 10.4                                    | 22.9                  | 92.3                      | 3.4                        |
| 5.0                                           | 3.9%                                       | 68.2%                            | 11.5                       | 11.5                                    | 25.4                  | 91.6                      | 3.5                        |
| 6.0                                           | 5.3%                                       | 73.5%                            | 13.8                       | 13.8                                    | 30.5                  | 90.1                      | 4.8                        |
| 7.0                                           | 3.8%                                       | 77.4%                            | 16.1                       | 16.1                                    | 35.6                  | 88.7                      | 3.4                        |
| 8.0                                           | 2.8%                                       | 80.1%                            | 18.4                       | 18.4                                    | 40.6                  | 87.2                      | 2.4                        |
| 9.0                                           | 2.5%                                       | 82.6%                            | 20.7                       | 20.7                                    | 45.7                  | 85.8                      | 2.1                        |
| 10.0                                          | 2.1%                                       | 84.7%                            | 23.0                       | 23.0                                    | 50.8                  | 84.3                      | 1.8                        |
| 15.0                                          | 5.7%                                       | 90.5%                            | 34.5                       | 34.5                                    | 76.2                  | 77.0                      | 4.4                        |
| 20.0                                          | 3.4%                                       | 93.8%                            | 46.0                       | 45.3                                    | 100.0                 | 69.1                      | 2.3                        |
| 25.0                                          | 3.4%                                       | 97.2%                            | 57.5                       | 45.3                                    | 100.0                 | 55.3                      | 1.9                        |
| 30.0                                          | 0.8%                                       | 98.0%                            | 69.1                       | 45.3                                    | 100.0                 | 46.1                      | 0.4                        |
| 35.0                                          | 0.9%                                       | 98.8%                            | 80.6                       | 45.3                                    | 100.0                 | 39.5                      | 0.3                        |
| 40.0                                          | 0.4%                                       | 99.3%                            | 92.1                       | 45.3                                    | 100.0                 | 34.5                      | 0.1                        |
| 45.0                                          | 0.5%                                       | 99.7%                            | 103.6                      | 45.3                                    | 100.0                 | 30.7                      | 0.1                        |
| 50.0                                          | 0.3%                                       | 100.0%                           | 115.1                      | 45.3                                    | 100.0                 | 27.6                      | 0.1                        |
|                                               | •                                          |                                  | •                          |                                         |                       |                           | 89.4                       |

Removal Efficiency Adjustment<sup>2</sup> =

6.5% **82.9%** 


Predicted Net Annual Load Removal Efficiency = Predicted Annual Rainfall Treated =

96.9%

1 - Based on 38 years of hourly rainfall data from Canadian Station 6166132, Owen Sound ON

- 2 Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.
- 3 CDS Efficiency based on testing conducted at the University of Central Florida
- 4 CDS design flowrate and scaling based on standard manufacturer model & product specifications

# PLAN VIEW B-B



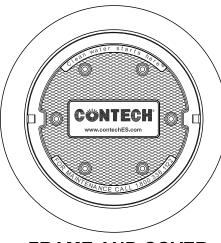


#### CDS PMSU2025-5-C DESIGN NOTES

THE STANDARD CDS PMSU2025-5-C CONFIGURATION IS SHOWN. ALTERNATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS.

#### **CONFIGURATION DESCRIPTION**

GRATED INLET ONLY (NO INLET PIPE)


GRATED INLET WITH INLET PIPE OR PIPES

CURB INLET ONLY (NO INLET PIPE)

CURB INLET WITH INLET PIPE OR PIPES

CUSTOMIZABLE SUMP DEPTH AVAILABLE

ANTI-FLOTATION DESIGN AVAILABLE UPON REQUEST



# FRAME AND COVER (DIAMETER VARIES) N.T.S.

| SITE SPECIFIC               |             |      |             |   |         |  |  |  |
|-----------------------------|-------------|------|-------------|---|---------|--|--|--|
| DATA REQUIREMENTS           |             |      |             |   |         |  |  |  |
| STRUCTURE ID                |             |      |             |   |         |  |  |  |
| WATER QUALITY               | FLOW RAT    | Έ (  | CFS OR L/s) |   | *       |  |  |  |
| PEAK FLOW RAT               | E (CFS OR   | L/s) | ,           |   | *       |  |  |  |
| RETURN PERIOD               | OF PEAK F   | LO   | W (YRS)     |   | *       |  |  |  |
| SCREEN APERTU               | JRE (2400 C | R 4  | 1700)       |   | *       |  |  |  |
|                             |             | _    |             |   |         |  |  |  |
| PIPE DATA:                  | I.E.        |      | MATERIAL    | D | IAMETER |  |  |  |
| INLET PIPE 1                | *           |      | *           |   | *       |  |  |  |
| INLET PIPE 2                | *           |      | *           |   | *       |  |  |  |
| OUTLET PIPE                 | *           |      | *           |   | *       |  |  |  |
| RIM ELEVATION               |             |      |             |   | *       |  |  |  |
| ANTI-FLOTATION              | BALLAST     |      | WIDTH       | T | HEIGHT  |  |  |  |
| NOTES/SPECIAL REQUIREMENTS: |             |      |             |   |         |  |  |  |
|                             |             |      |             |   |         |  |  |  |
| * PER ENGINEER              | OF RECOF    | RD   |             |   |         |  |  |  |

#### GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- 4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET HS20 (AASHTO M 306) LOAD RATING, ASSUMING GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION.
- 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.

#### **INSTALLATION NOTES**

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE (LIFTING CLUTCHES PROVIDED).
- C. CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.



800-338-1122 513-645-7000 513-645-7993 FAX

CDS PMSU2025-5-C INLINE CDS STANDARD DETAIL



# CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD BASED ON A FINE PARTICLE SIZE DISTRIBUTION

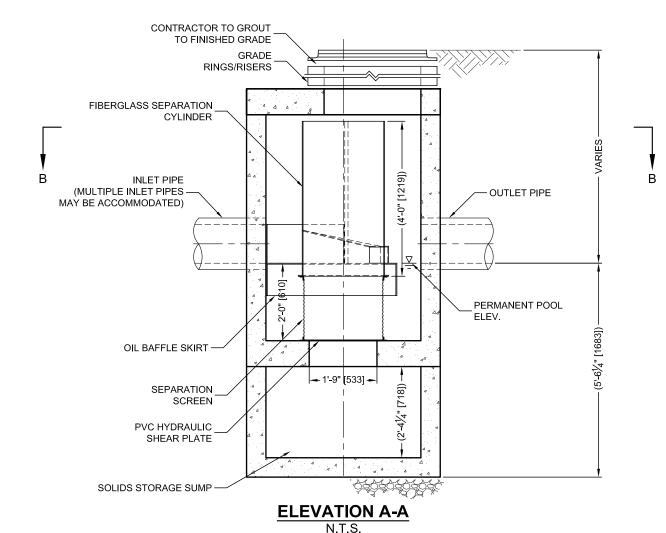


Project Name:185 Clark StreetEngineer:Capes EngineeringLocation:Blue Mountains, ONContact:Clayton Capes, P.Eng

OGS #: 2 Report Date: 15-Aug-22

Area0.360haRainfall Station #198Weighted C0.90Particle Size DistributionFINECDS Model2015CDS Treatment Capacity20I/s

| Rainfall<br>Intensity <sup>1</sup><br>(mm/hr) | Percent<br>Rainfall<br>Volume <sup>1</sup> | Cumulative<br>Rainfall<br>Volume | Total<br>Flowrate<br>(I/s) | <u>Treated</u><br><u>Flowrate (I/s)</u> | Operating<br>Rate (%) | Removal<br>Efficiency (%) | Incremental<br>Removal (%) |
|-----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------|-----------------------------------------|-----------------------|---------------------------|----------------------------|
| 1.0                                           | 10.8%                                      | 21.1%                            | 0.9                        | 0.9                                     | 4.5                   | 97.6                      | 10.5                       |
| 1.5                                           | 10.1%                                      | 31.2%                            | 1.4                        | 1.4                                     | 6.8                   | 96.9                      | 9.8                        |
| 2.0                                           | 8.5%                                       | 39.7%                            | 1.8                        | 1.8                                     | 9.1                   | 96.3                      | 8.2                        |
| 2.5                                           | 6.7%                                       | 46.4%                            | 2.3                        | 2.3                                     | 11.4                  | 95.6                      | 6.4                        |
| 3.0                                           | 6.1%                                       | 52.4%                            | 2.7                        | 2.7                                     | 13.6                  | 94.9                      | 5.7                        |
| 3.5                                           | 4.1%                                       | 56.5%                            | 3.2                        | 3.2                                     | 15.9                  | 94.3                      | 3.9                        |
| 4.0                                           | 4.2%                                       | 60.7%                            | 3.6                        | 3.6                                     | 18.2                  | 93.6                      | 3.9                        |
| 4.5                                           | 3.7%                                       | 64.4%                            | 4.1                        | 4.1                                     | 20.4                  | 93.0                      | 3.4                        |
| 5.0                                           | 3.9%                                       | 68.2%                            | 4.5                        | 4.5                                     | 22.7                  | 92.3                      | 3.6                        |
| 6.0                                           | 5.3%                                       | 73.5%                            | 5.4                        | 5.4                                     | 27.3                  | 91.0                      | 4.8                        |
| 7.0                                           | 3.8%                                       | 77.4%                            | 6.3                        | 6.3                                     | 31.8                  | 89.7                      | 3.4                        |
| 8.0                                           | 2.8%                                       | 80.1%                            | 7.2                        | 7.2                                     | 36.3                  | 88.4                      | 2.4                        |
| 9.0                                           | 2.5%                                       | 82.6%                            | 8.1                        | 8.1                                     | 40.9                  | 87.1                      | 2.2                        |
| 10.0                                          | 2.1%                                       | 84.7%                            | 9.0                        | 9.0                                     | 45.4                  | 85.8                      | 1.8                        |
| 15.0                                          | 5.7%                                       | 90.5%                            | 13.5                       | 13.5                                    | 68.2                  | 79.3                      | 4.5                        |
| 20.0                                          | 3.4%                                       | 93.8%                            | 18.0                       | 18.0                                    | 90.9                  | 72.8                      | 2.5                        |
| 25.0                                          | 3.4%                                       | 97.2%                            | 22.5                       | 19.8                                    | 100.0                 | 61.8                      | 2.1                        |
| 30.0                                          | 0.8%                                       | 98.0%                            | 27.0                       | 19.8                                    | 100.0                 | 51.5                      | 0.4                        |
| 35.0                                          | 0.9%                                       | 98.8%                            | 31.5                       | 19.8                                    | 100.0                 | 44.1                      | 0.4                        |
| 40.0                                          | 0.4%                                       | 99.3%                            | 36.0                       | 19.8                                    | 100.0                 | 38.6                      | 0.2                        |
| 45.0                                          | 0.5%                                       | 99.7%                            | 40.5                       | 19.8                                    | 100.0                 | 34.3                      | 0.2                        |
| 50.0                                          | 0.3%                                       | 100.0%                           | 45.0                       | 19.8                                    | 100.0                 | 30.9                      | 0.1                        |
|                                               |                                            |                                  |                            |                                         |                       |                           | 90.5                       |


Removal Efficiency Adjustment<sup>2</sup> =

6.5%

Predicted Net Annual Load Removal Efficiency = Predicted Annual Rainfall Treated = 84.0% 97.4%

- 1 Based on 38 years of hourly rainfall data from Canadian Station 6166132, Owen Sound ON
- 2 Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.
- 3 CDS Efficiency based on testing conducted at the University of Central Florida
- 4 CDS design flowrate and scaling based on standard manufacturer model & product specifications

# PLAN VIEW B-B



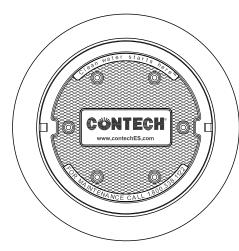


#### CDS PMSU2015-4-C DESIGN NOTES

THE STANDARD CDS PMSU2015-4-C CONFIGURATION IS SHOWN. ALTERNATE CONFIGURATIONS ARE AVAILABLE AND ARE LISTED BELOW. SOME CONFIGURATIONS MAY BE COMBINED TO SUIT SITE REQUIREMENTS.

#### **CONFIGURATION DESCRIPTION**

GRATED INLET ONLY (NO INLET PIPE)


GRATED INLET WITH INLET PIPE OR PIPES

CURB INLET ONLY (NO INLET PIPE)

CURB INLET WITH INLET PIPE OR PIPES

CUSTOMIZABLE SUMP DEPTH AVAILABLE

ANTI-FLOTATION DESIGN AVAILABLE UPON REQUEST



# FRAME AND COVER (DIAMETER VARIES) N.T.S.

| <u>SITE SPECIFIC</u><br>DATA REQUIREMENTS |             |       |           |   |          |  |  |
|-------------------------------------------|-------------|-------|-----------|---|----------|--|--|
|                                           |             |       |           |   | <u> </u> |  |  |
| STRUCTURE ID                              |             |       |           |   |          |  |  |
| WATER QUALITY                             | FLOW RAT    | E (CF | S OR L/s) |   | *        |  |  |
| PEAK FLOW RAT                             | E (CFS OR   | L/s)  |           |   | *        |  |  |
| RETURN PERIOD                             | OF PEAK F   | LOW   | (YRS)     |   | *        |  |  |
| SCREEN APERTU                             | JRE (2400 C | R 470 | 00)       |   | *        |  |  |
|                                           |             |       |           |   |          |  |  |
| PIPE DATA:                                | I.E.        | MA    | TERIAL    | D | IAMETER  |  |  |
| INLET PIPE 1                              | *           |       | *         |   | *        |  |  |
| INLET PIPE 2                              | *           |       | *         |   | *        |  |  |
| OUTLET PIPE                               | *           |       | *         |   | *        |  |  |
| RIM ELEVATION                             |             |       |           |   | *        |  |  |
| ANTI-FLOTATION                            | BALLAST     |       | WIDTH     |   | HEIGHT   |  |  |
|                                           |             |       | *         |   | *        |  |  |
| NOTES/SPECIAL REQUIREMENTS:               |             |       |           |   |          |  |  |
| * PER ENGINEER OF RECORD                  |             |       |           |   |          |  |  |

#### GENERAL NOTES

- 1. CONTECH TO PROVIDE ALL MATERIALS UNLESS NOTED OTHERWISE.
- 2. DIMENSIONS MARKED WITH () ARE REFERENCE DIMENSIONS. ACTUAL DIMENSIONS MAY VARY.
- 3. FOR FABRICATION DRAWINGS WITH DETAILED STRUCTURE DIMENSIONS AND WEIGHTS, PLEASE CONTACT YOUR CONTECH ENGINEERED SOLUTIONS LLC REPRESENTATIVE. www.contechES.com
- 4. CDS WATER QUALITY STRUCTURE SHALL BE IN ACCORDANCE WITH ALL DESIGN DATA AND INFORMATION CONTAINED IN THIS DRAWING.
- 5. STRUCTURE SHALL MEET AASHTO HS20 AND CASTINGS SHALL MEET HS20 (AASHTO M 306) LOAD RATING, ASSUMING GROUNDWATER ELEVATION AT, OR BELOW, THE OUTLET PIPE INVERT ELEVATION. ENGINEER OF RECORD TO CONFIRM ACTUAL GROUNDWATER ELEVATION.
- 6. PVC HYDRAULIC SHEAR PLATE IS PLACED ON SHELF AT BOTTOM OF SCREEN CYLINDER. REMOVE AND REPLACE AS NECESSARY DURING MAINTENANCE CLEANING.

#### **INSTALLATION NOTES**

- A. ANY SUB-BASE, BACKFILL DEPTH, AND/OR ANTI-FLOTATION PROVISIONS ARE SITE-SPECIFIC DESIGN CONSIDERATIONS AND SHALL BE SPECIFIED BY ENGINEER OF RECORD.
- B. CONTRACTOR TO PROVIDE EQUIPMENT WITH SUFFICIENT LIFTING AND REACH CAPACITY TO LIFT AND SET THE CDS MANHOLE STRUCTURE (LIFTING CLUTCHES PROVIDED).
- C. CONTRACTOR TO ADD JOINT SEALANT BETWEEN ALL STRUCTURE SECTIONS, AND ASSEMBLE STRUCTURE.
- D. CONTRACTOR TO PROVIDE, INSTALL, AND GROUT PIPES. MATCH PIPE INVERTS WITH ELEVATIONS SHOWN.
- E. CONTRACTOR TO TAKE APPROPRIATE MEASURES TO ASSURE UNIT IS WATER TIGHT, HOLDING WATER TO FLOWLINE INVERT MINIMUM. IT IS SUGGESTED THAT ALL JOINTS BELOW PIPE INVERTS ARE GROUTED.



CDS PMSU2015-4-C INLINE CDS STANDARD DETAIL

#### Appendix G – Water Demand



#### Domestic & Fire Protection Water Supply/Storage

Project: Lot 31 Clark Street
Town of the Blue Mountains

 Prepared by:
 C. Capes

 Checked by:
 C. Capes

 Project No:
 2021-185

 Date:
 December 13, 2023

#### **Domestic Flow Calculations**

#### Commercial & Industrial Building

Number of Water Fixture Units = <260

Water Demand = 2360 L/day OBC Table 7.4.10.5 Conversion of WFSU to L/day (minimum value 2360 L when WFU <260)

Operating Hours = 10 hrs

Average Day Demand = 2,360 L/day per building

0.59 L/s

Max Day Demand = 4,720 L/day Town Recommended Max Day Demand Factor = 2.0

Peak Hourly Demand = 1,062 L/hr Town Recommended Max Hour Demand Factor = 4.5

Domestic Peak Demand = 0.30 L/s per building

#### **Fire Flow Calculations**

#### Based on Fire Underwriters Survey

Total Domestic Peak Demand =

 $F = 220C\sqrt{A}$ 

Where F = Required fire flow in Lpm

C = Construction type coefficient = 1.5 Type V wood frame (essentially all combustible)

0.8 Type IV-A Mass Timber Construction
0.9 Type IV-B Mass Timber Construction

1.0 Type IV-C Mass Timber Construction1.5 Type IV-D Mass Timber Construction

1.0 ordinary construction (brick or other masonry walls, combustible floor and interior)

0.8 non-combustible (unprotected metal structure components, masonry or metal walls)

fire-resistive construction (fully protected frame, floors, roof)

#### A = Total floor area in sq.m. excluding basements, includes garage per building

| Floor   | Area (sq.m) | %    |
|---------|-------------|------|
|         |             |      |
| Bldg. A | 1,301       | 100% |
| Bldg. A | 1,301       | 100% |
| Bldg. B | 454         | 100% |
| Bldg. C | 681         | 100% |
| Bldg. D | 764         | 100% |
| Bldg. E | 1,054       | 100% |
| Bldg. F | 764         | 100% |
| Bldg. G | 530         | 100% |
| Bldg. H | 1,704       | 100% |
|         |             |      |
| Total   | 8,553       |      |

for fire resistive bldgs., consider the 2 largest adjoining floors + 50% of each of any floors immediately above them when the vertical openings are not adequately protected.

for fire registive

for fire resistive bldgs., consider the area of largest adjoining floor + 25% of each of the 2 floors immediately adjoining floors when the vertical openings and exterior vertical communications are protected for 1 hr rating.

Total Applicable Area = 8,553

F = 16,277 L/min (adjust formula accordingly)

16000 L/min (Round to nearest 1000 L/min)

2 Occupancy Reduction

-25% reduction for non-combustible

-15% reduction for limited combustible 0% reduction for combustible

15% increase for free burning 25% increase for rapid burning

Reduction = 0 L/min (0% of F1)

F = 16000 L/min

3 Sprinkler Reduction

30% Reduction for NFPA Sprinkler System (refer to FUS manual, 2020)

Reduction = 0 L/min (0% of F2)

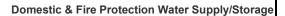
F = 16000 L/min

Separation Charge

| ocparation of | iaigo      |            |            |            |            |           |            |            |                   |
|---------------|------------|------------|------------|------------|------------|-----------|------------|------------|-------------------|
|               |            | Building A | Building B | Building C | Building D | Buildng E | Building F | Building G | <b>Building H</b> |
|               | North Side | 15%        | 0%         | 0%         | 0%         | 0%        | 0%         | 0%         | 0%                |
|               | East Side  | 0%         | 20%        | 20%        | 20%        | 20%       | 20%        | 0%         | 0%                |
|               | South Side | 0%         | 15%        | 15%        | 15%        | 15%       | 15%        | 15%        | 0%                |
|               | West Side  | 0%         | 0%         | 20%        | 20%        | 20%       | 20%        | 20%        | 0%                |
| •             | Total      | 15%        | 35%        | 55%        | 55%        | 55%       | 55%        | 35%        | 0%                |

MaxSeparation Charge = 55% 8800 L/min (55% of F3)

Fire Flow = 1 - 2 - 3 + 4


= 24800 L/min = 413.33 L/s

Min Value Under FUS = 2,000 L/min

Domestic Demand + Fire Flow = 413.92 L/s 24835 I/min Max Value Under FUS = 45,000 L/min

0 to 3m 25%
3.1 to 10m 20%
10.1 to 20m 15%
20.1 to 30m 0%

Separation Charge





Project: Lot 31 Clark Street **Town of the Blue Mountains**  Prepared by: C. Capes C. Capes Checked by: Project No: 2021-185 Date: December 13, 2023

#### **Domestic Flow Calculations**

#### Industrial Buildings

OBC Table 7.4.10.5 Conversion of WFSU to L/day (minimum value 2360 L when WFU <260) Number of Water Fixture Units = <260

2360 L/day Water Demand = Operating Hours = 10 hrs

Average Day Demand = per building 2,360 L/day

4,720 L/day Town Recommended Max Day Demand Factor = 2.0 Max Day Demand = Peak Hourly Demand = 1,062 L/hr Town Recommended Max Hour Demand Factor = 4.5

Domestic Peak Demand = 0.30 L/s per building Total Domestic Peak Demand = 0.59 L/s

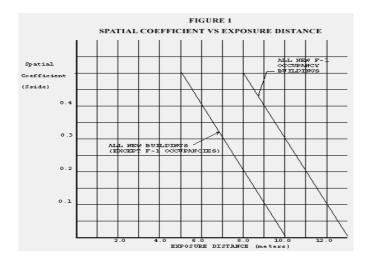
#### **Fire Flow Calculations**

Office of the Fire Marshal, OFM Guideline, Fire Protection Water Supply Guideline for Part 3 in the Ontarion Building Code (Oct 1999) Subsection 3.2.2 of the Ontario Building Code, 2012

Q=KVS<sub>Total</sub> where

Q = Minimum supply of water in Litres (L)

K = water supply coefficient from Table 1


V = total building volume in cubic meters

 $S_{Tot}$  = total of the spacial coefficient values from the property line exposures on all sides as obtained from the formula:

 $S_{Tot} = 1.0 + [(S_{Side1}) + (S_{Side2}) + (S_{Side3}) + ... etc.]$ 

values are obtained from Figure 1, as modified by Sections 6.39(e) and 6.3(f) of the OBC Guideline where  $S_{\text{Side}}$ 

need not exceed 2.0  $S_{\text{Tot}}$ 



#### Building Classification:

Building is of noncombustible construction or of heavy timber construction conforming to Article 3.1.4.6. of the OBC. Floor assemblies are fire separations but with no fire-resistance rating. Roof assemblies, mezzanines, loadbearing walls, columns and arches do not have a fire-resistance rating.

Water Supply Coefficient - K

Table 1 of OBC A.3.2.5.7

Type F3, OBC Table 3.1.2.1

#### **Building Volumes**

| Bldg.   | Area              | Height | Volume            |
|---------|-------------------|--------|-------------------|
|         | (m <sup>2</sup> ) | (m)    | (m <sup>3</sup> ) |
| Bldg. A | 1,301             | 7.50   | 9755              |
| Bldg. B | 454               | 3.00   | 1362              |
| Bldg. C | 681               | 3.00   | 2044              |
| Bldg. D | 764               | 3.00   | 2291              |
| Bldg. E | 1,054             | 3.00   | 3161              |
| Bldg. F | 764               | 3.00   | 2291              |
| Bldg. G | 530               | 3.00   | 1591              |
| Bldg. H | 1,704             | 4.00   | 6816              |
|         |                   | Total  | 29310             |

Total Building Volume

Exposure Distances

$$S_{Tot} = 1.0 + [(S_{Side1}) + (S_{Side2}) + (S_{Side3}) + ... etc.]$$

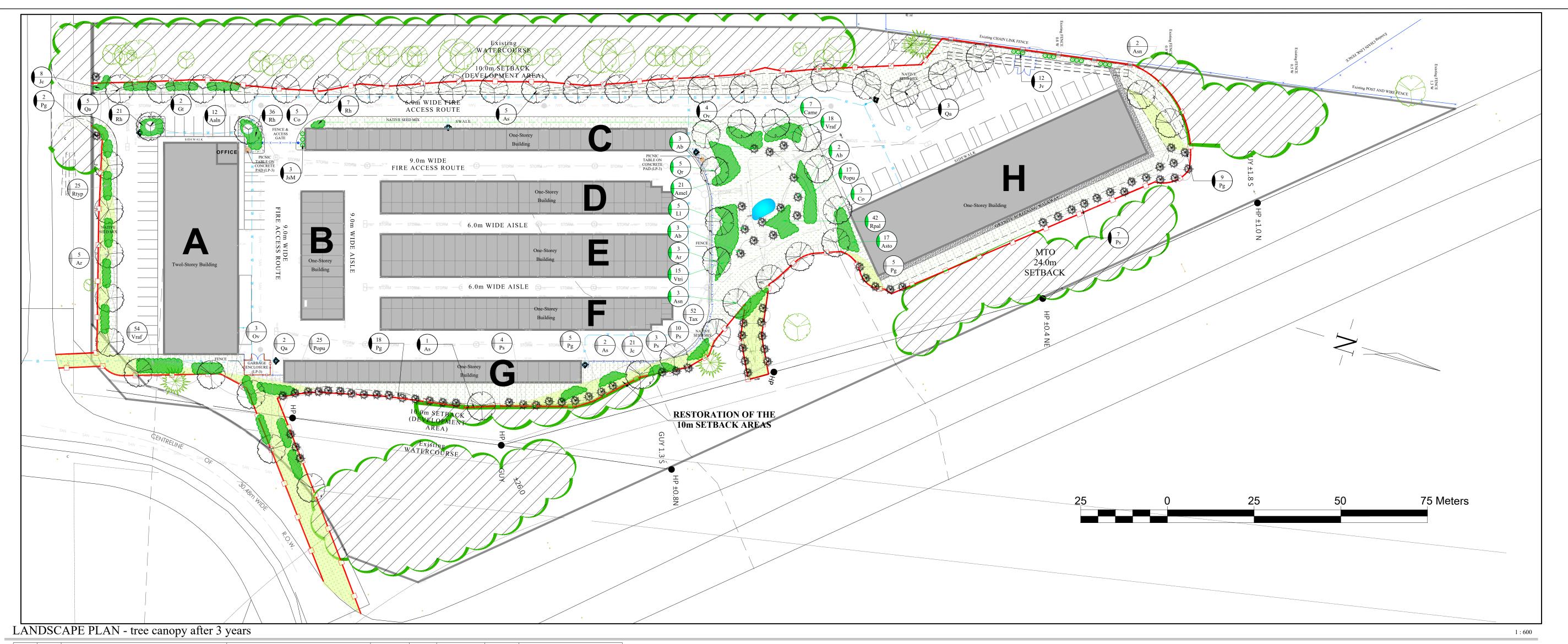
|         | S <sub>Tot</sub> | S <sub>Side</sub> (W) | West  | S <sub>Side</sub> (S) | South | S <sub>Side</sub> (E) | East  | S <sub>Side</sub> (N) | North | Bldg.   |
|---------|------------------|-----------------------|-------|-----------------------|-------|-----------------------|-------|-----------------------|-------|---------|
|         |                  |                       | (m)   |                       | (m)   |                       | (m)   |                       | (m)   |         |
|         | 0                | 0                     | >10 m | Bldg. A |
|         | 0                | 0                     | >10 m | Bldg. B |
|         | 0.1              | 0                     | >10 m | 0                     | >10 m | 0.1                   | 9 m   | 0                     | >10 m | Bldg. C |
|         | 0.5              | 0.1                   | 9 m   | 0                     | >10 m | 0.4                   | 6 m   | 0                     | >10 m | Bldg. D |
| ← Max S | 0.8              | 0.4                   | 6 m   | 0                     | >10 m | 0.4                   | 6 m   | 0                     | >10 m | Bldg. E |
|         | 0.5              | 0.4                   | 6.00  | 0                     | >10 m | 0.1                   | 9.00  | 0                     | >10 m | Bldg. F |
|         | 0.1              | 0.1                   | 9.00  | 0                     | >10 m | 0                     | >10 m | 0                     | >10 m | Bldg. G |
| 1       | 0                | 0                     | >10 m | Bldg. H |
| 1       |                  |                       |       |                       |       |                       |       |                       |       |         |

S<sub>Tot</sub> 1.80 Max. Value = 2.0

**Minimum Fire Water Supply** 

Fire Water Supply Flow Rate

Q=KVS<sub>Total</sub> 1160671 Litres


Table 2 Required Minimum Water Supply Flow Rate (L/min), provided in the OBC A.3.2.5.7

**150.00** L/s

Domestic + Fire Flow Rate

150.59 L/s

Appendix H – Landscape Plan



RESTORATION PLANT LABEL

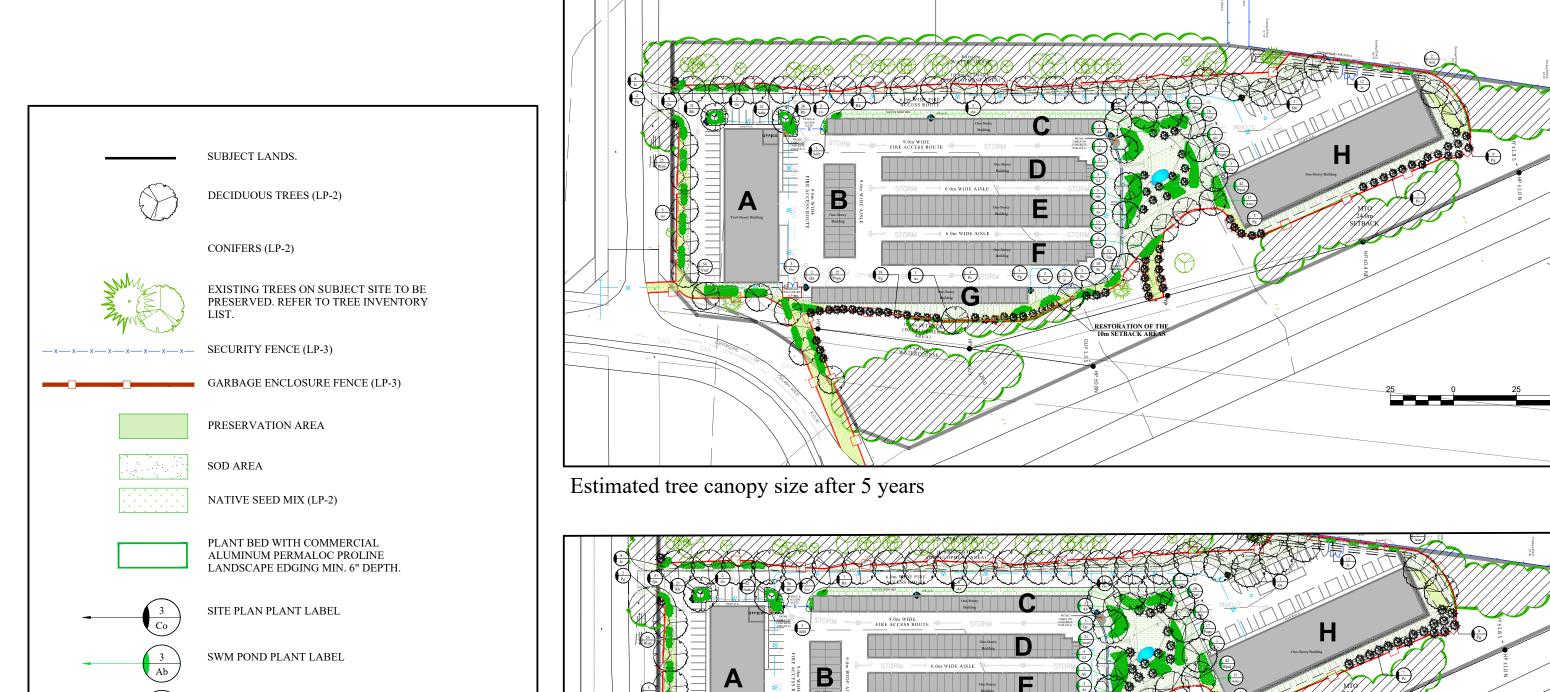
PRESERVED TREE CANOPY

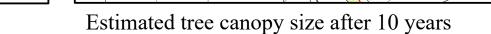
PICNIC TABLE ON CONCRETE PAD (LP-3)

RESTORATION AREA

GENERAL LEGEND

50 cm 3 gal 1.5m o/c D-3 Full form / Container grown


CODE QNTY COMMON NAME BOTANICAL NAME FORM SPACING DETAIL NOTES **DECIDUOUS TREES** D-1 Full Form/ Fall prunning only As 6 SUGAR MAPLE Acer saccharum W.B. 9.0 m o/c Co 5 COMMON HACKBERRY Celtis occidentalis W.B. 9.0 m o/c D-1 Full Form 60 mm Gt 2 SHADEMASTER HONEYLOCUST Gleditsia triacanthos var. inermis 'Shademaster' | 60 mm W.B. 9.0 m o/c D-1 Full Form/ Spring plant only Ov 4 IRONWOOD 60 mm W.B. 7.0 m o/c Ostrya virginiana Qa 8 WHITE OAK 60 mm W.B. 15.0 m o/c D-1 Spring planting/ Soil pH<7.5 Quercus alba CONIFEROUS TREES Pg 29 WHITE SPRUCE 200cm w.b. 5m o/c D-2 Full form / Do not cut leader Picea glauca Jv | 12 | EASTERN RED CEDAR D-2 Full form / Do not cut leader w.b. 2.5m o/c Juniperus virginiana Ps 7 EASTERN WHITE PINE Pinus strobus 150 cm w.b. 6m o/c D-2 Full form / Do not cut leader SHRUBS Aaln 12 SERVICE-BERRY Amelanchier alnifolia 60 cm 3 gal 1.8m o/c D-3 Full form / Container grown Jc 8 CANADIAN JUNIPER D-2 Full form / Container grown 40cm 3 gal 1.5m o/c Juniperus communis var. depressa JsM 3 MOFFET JUNIPER 150cm w.b. 1.5 m o/c D-3 Full form / Container grown Juniperus scopulorum 'Moffettii' NATIVE PERENNIALS Rh 64 BLACK EYED SUSAN Rudbeckia hirta 1 gal pot 0.90 m o/c n/a Full form / Container grown SITE PLAN PLANT LIST. REFER TO DETAILS AND NOTES ON LP-2 DECIDUOUS TREES D-1 Full Form/ Fall prunning only Ar 3 RED MAPLE 60 mm W.B. 9.0 m o/c Acer rubrum D-1 Full Form/ Fall prunning only Asn 3 SILVER MAPLE W.B. 9.0 m o/c Acer saccharinum Co 3 COMMON HACKBERRY 60 mm W.B. 9.0 m o/c D-1 Full Form Celtis occidentalis Qr 5 RED OAK 60 mm W.B. 9.0 m o/c D-1 Spring planting/ Soil pH<7.5 Quercus rubra CONIFEROUS TREES Ab 8 BALSAM FIR Abies balsamea 200cm w.b. 6m o/c D-2 Full form / Do not cut leader Ll 5 AMERICAN LARCH D-2 Full form / Do not cut leader Larix laricina 200cm w.b. 8.0m o/c NATIVE SHRUBS Amel 21 BLACK CHOKEBERRY D-3 Full form / Container grown 60 cm 3 gal 1.2m o/c Aronia melanocarpa Asto | 17 | RUNNING JUNEBERRY D-3 Full form / Container grown Amelanchier stolonifera 60 cm 3 gal 1.8m o/c Came 7 AMERICAN HAZELNUT Corylus americana 60 cm 3 gal 2.5m o/c D-3 Full form / Container grown Popu 17 COMMON NINEBARK Physocarpus opulifolius 60 cm 3 gal 1.8m o/c D-3 Full form / Container grown Rpal 42 SWAMP ROSE 60 cm 3 gal 1.0m o/c D-3 Full form / Container grown Rosa palustris Vraf 18 DOWNY ARROW-WOOD 60 cm 3 gal 1.5m o/c D-3 Full form / Container grown Viburnum rafinesquianum 60 cm 3 gal 2.5m o/c D-3 Full form / Container grown Vtri | 15 | HIGH BUSH CRANBERRY Viburnum trilobum SWM POND PLANT LIST. REFER TO DETAILS AND NOTES ON LP-2 DECIDUOUS TREES Ar 5 RED MAPLE D-1 Full Form/ Fall prunning only Acer rubrum W.B. 9.0 m o/c D-1 Full Form/ Fall prunning only As 2 SUGAR MAPLE Acer saccharum W.B. 9.0 m o/c Asn 2 SILVER MAPLE 60 mm W.B. 9.0 m o/c D-1 Full Form/ Fall prunning only Acer saccharinum D-1 Full Form/ Spring plant only Ov 3 IRONWOOD 45 mm W.B. 7.0 m o/c Ostrya virginiana Qa 2 WHITE OAK Quercus alba 45 mm W.B. 15.0 m o/c D-1 Spring planting/ Soil pH<7.5 CONIFEROUS TREES Pg 10 WHITE SPRUCE 150 cm w.b. 5m o/c D-2 Full form / Do not cut leader Picea glauca Ps 17 EASTERN WHITE PINE 150 cm w.b. 6m o/c D-2 Full form / Do not cut leader Pinus strobus NATIVE SHRUBS Jc 21 CANADIAN JUNIPER D-2 Full form / Container grown Juniperus communis var. depressa 40cm 3 gal 1.5m o/c Popu 25 COMMON NINEBARK 50cm 3 gal 1.8m o/c D-3 Full form / Container grown Physocarpus opulifolius 80cm3 gal2.5m o/cD-3Full form / Container grown40cm2 gal1.0 m o/cD-3Full form / Container grown Rtyp 25 STAGHORN SUMAC Rhus typhina Tax 52 AMERICAN YEW


Taxus canadensis

Viburnum rafinesquianum

Vraf | 54 | DOWNY ARROW-WOOD

RESTORATION PLANT LIST. REFER TO DETAILS AND NOTES ON LP-2







#### GENERAL NOTES

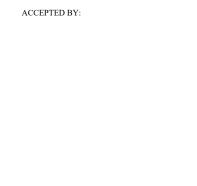
CONTRACTOR IS RESPONSIBLE FOR ALL LOCATES INCLUDING ALL UNDERGROUND SERVICES PRIOR TO ANY EXCAVATION OR INSTALLATIONS. THE CONTRACTOR IS REQUIRED TO NOTIFY THE VARIOUS UTILITY COMPANIES 48 HOURS PRIOR TO THE COMMENCEMENT OF ANY WORK.

ANY ACCOMPANYING DOCUMENTATION RELATING TO THE LANDSCAPE PLAN AND/OR PRESERVATION PLAN SUCH AS TENDER DOCUMENTS AND CHANGE NOTICES ARE TO BE ENDORSED BY J.D.B. ASSOCIATES LIMITED PRIOR TO THE BEGINNING OF ANY SITE WORKS. IN THE EVENT THAT OF A DISCREPANCY THE DRAWING SHALL BE ASSUMED CORRECT.

IT IS THE RESPONSIBILITY OF THE PERSON OR PERSONS RESPONSIBLE FOR THE CONSTRUCTED WORKS TO NOTIFY THE LANDSCAPE ARCHITECT WHEN PREPARED FOR ANY REOUIRED INSPECTIONS AND SIGN OFFS.

SCHEDULED MEETINGS SHALL TAKE PLACE AT THE CLOSEST MUTUALLY CONVENIENT TIME.

| No. | REVISION                 | DATE                             | APRVD |
|-----|--------------------------|----------------------------------|-------|
| 1.  | CLIENT REVIEW            | December 6 <sup>th</sup> , 2022  | StT   |
| 2.  | AS PER TOWN COMMENTS     | December 27 <sup>th</sup> , 2023 | StT   |
| 3.  | AS PER TOWN COMMENTS     | May 28 <sup>th</sup> , 2024      | StT   |
| 4.  | AS PER TOWN COMMENTS     | August 1st, 2024                 | StT   |
| 5.  | AS PER UPDATED SITE PLAN | November 14 <sup>th</sup> , 2024 | StT   |
|     |                          |                                  |       |
|     |                          |                                  |       |
|     |                          |                                  |       |
|     |                          |                                  |       |
|     |                          |                                  |       |

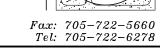

ALL DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND ARE THE PROPERTY OF JDB ASSOCIATES LIMITED. DRAWINGS ARE NOT TO BE MODIFIED AND/OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF JDB ASSOCIATES LIMITED REPRODUCTION OF DRAWINGS IN ANY FORM WITHOUT THE CONSENT OF JDB ASSOCIATES LIMITED VOIDS THE DRAWING AT WHICH TIME JDB ASSOCIATES LIMITED ACCEPTS NO LIABILITY FOR THE DRAWING CONTENT OR WORKS RESULTING FROM SAID REPRODUCTION. DRAWINGS MAY BE REPRODUCED BY MUNICIPAL AND GOVERNMENT AGENCIES RESPONSIBLE FOR APPROVALS FOR THEIR OWN USE. JDB ASSOCIATES RESERVES THE RIGHT TO WITHDRAW ANY DRAWING(S) FROM GOVERNMENT OR MUNICIPAL AGENCIES WHETHER APPROVED OR NOT IN THE EVENT THAT ACCOUNTS ARE NOT SETTLED OR REMAIN OUTSTANDING


IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY ALL DIMENSIONS ON THE SITE AND REPORT ANY DISCREPANCIES OR VARIATIONS FROM THE JDB ASSOCIATES LIMITED IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, ARCHITECTURAL, MECHANICAL, ENGINEERING OR ELECTRICAL INFORMATION SHOWN ON THE DRAWING. FOR FURTHER INFORMATION REFER TO APPROPRIATE SURVEY, ARCHITECTURAL, MECHANICAL, ENGINEERING OR

ELECTRICAL DRAWINGS PRIOR TO PROCEEDING WITH ANY WORKS.

THIS DRAWING IS NOT TO BE SCALED.

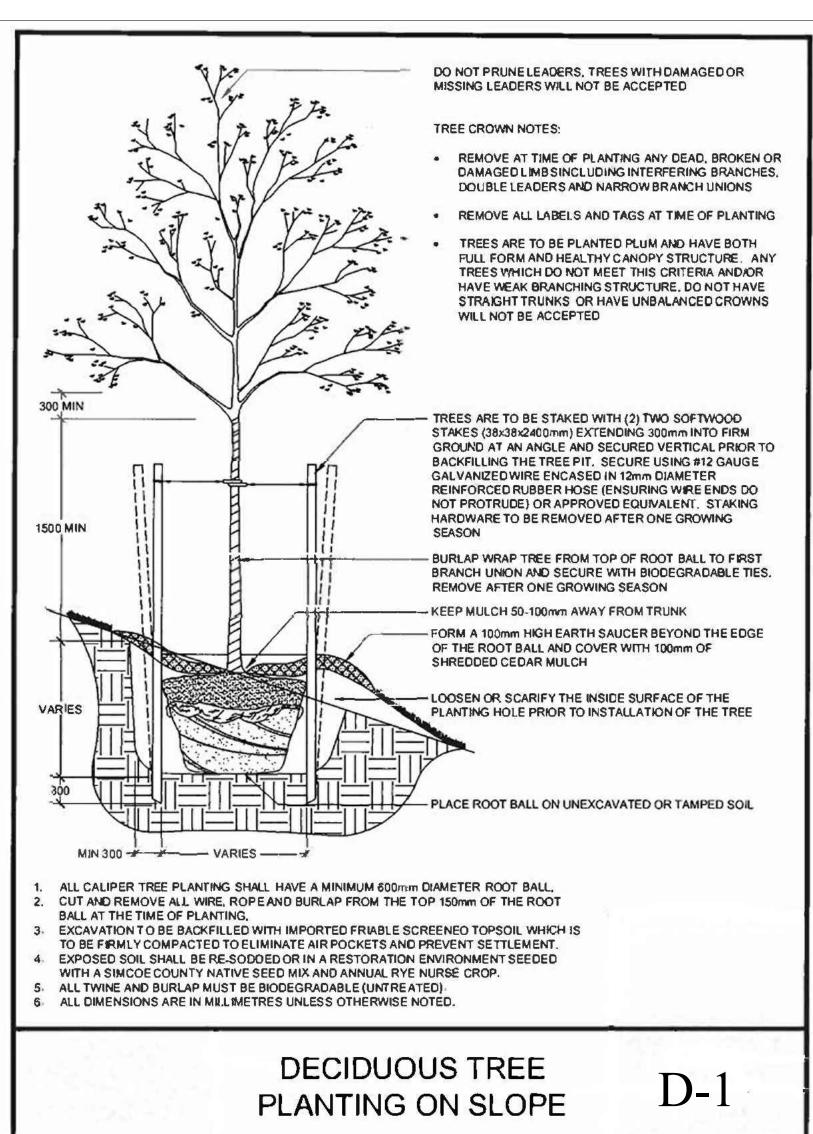


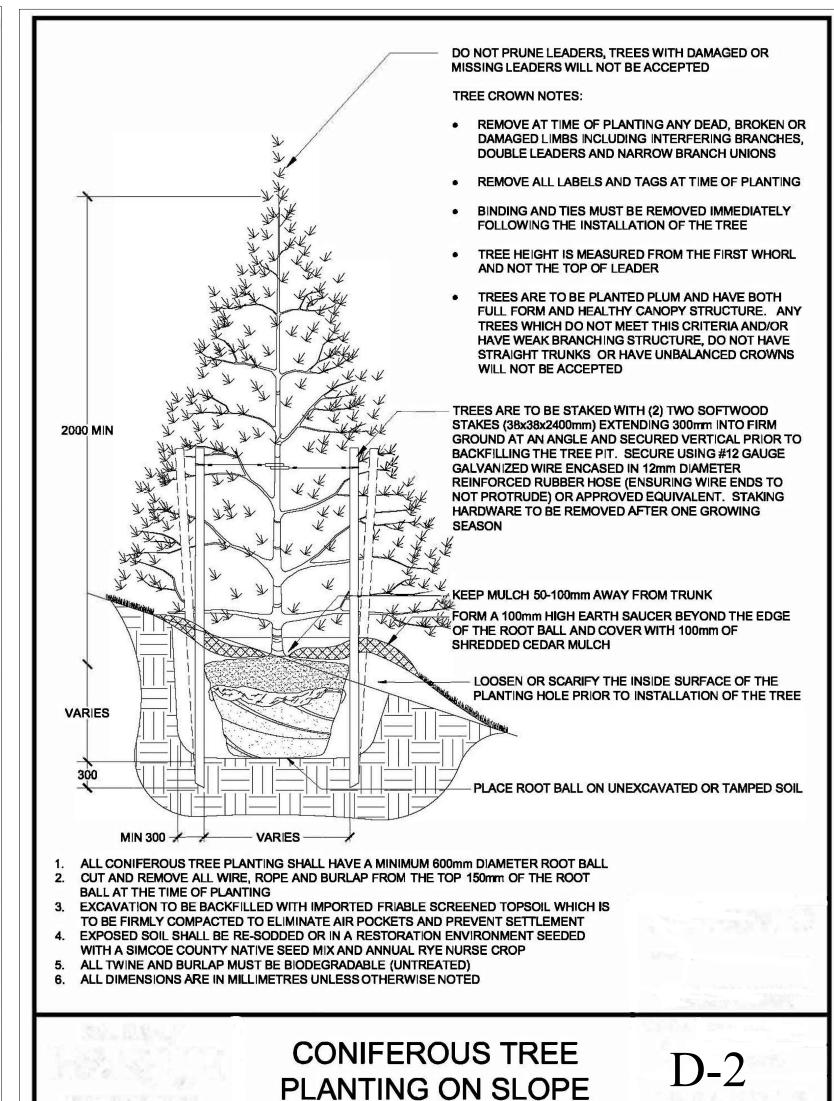


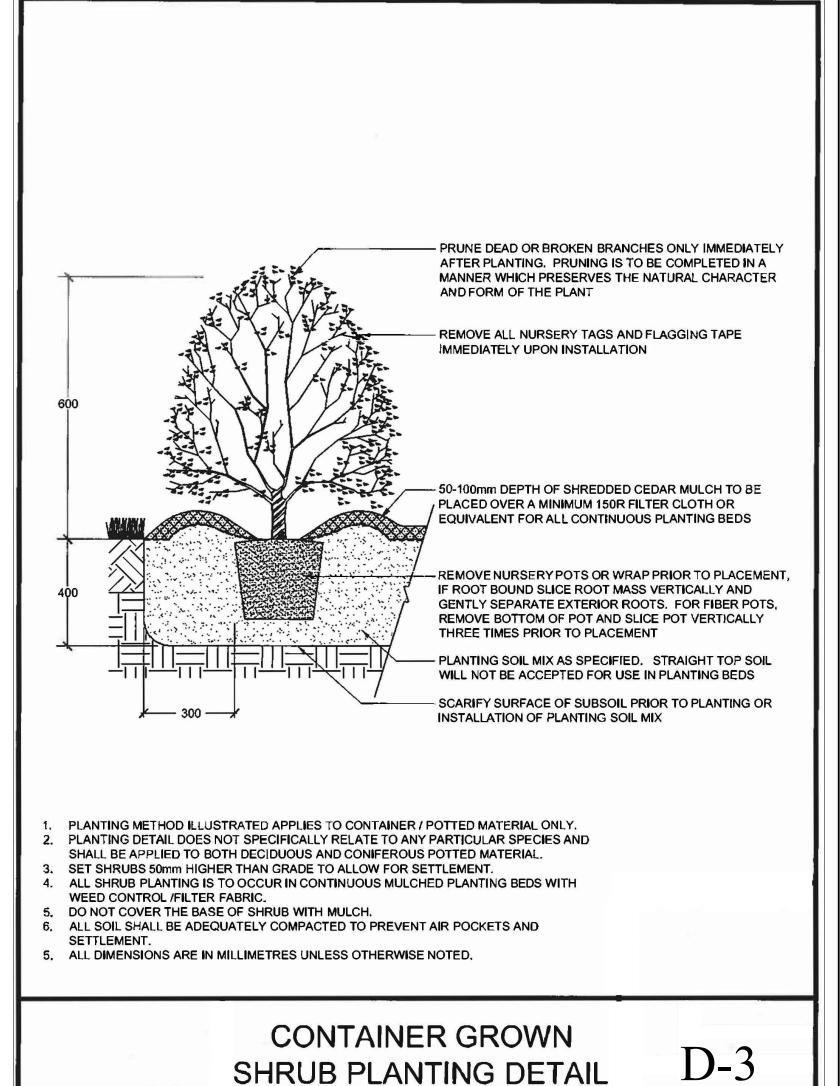



JDB associates LTD.

Urban Designers Landscape Architects


274 Burton Ave., Suite 1201 Barrie, Ontario L4N 5W4





LOT 31 CLARK ST Town of the Blue Mountains, ON

LANDSCAPE/ RESTORATION PLANTING PLAN

| SCALE:        | DESIGNED BY:             | REVIEWED BY: |
|---------------|--------------------------|--------------|
| As shown      | IT                       | NB           |
| TOWN FILE No. | OUR FILE REF. #<br>14-22 | LP-1         |







SHORELINE ZONE NO-MOW ZONE

APPROXIMATELY 837 sq/m (+10%) (+/- MEASUREMENTS TO BE TAKEN

#7107 - SEASONALLY FLOODED ANNUAL/PERENNIAL MIXTURE

- 5% NODDING BUR MARIGOLD (Biddens ceruna 22% FOX SEDGE (Carex vulpinoidea
- 25% CANADA WILD RYE (Elymus canadensis)
- 25% SWITCHGRASS (Panicum virgatum) 23% FOWL MEADOWGRASS (Poa palustris)

SEEDING RATE - 30kg PER HECTARE SUPPLIED BY - OSC SEEDS 1-519-886-055

ANNUAL RYE NURSE CROP TO BE APPLIED AT TIME OF SEASONALL FLOODED ANNUAL/PERENNIAL MIXTURE AT A RATE OF 12kg PER HECTARE. REFER TO TERRASEEDING NOTES AND MULCH APPLICATION SPECIFICATIONS IN THIS BOX FOR FURTHER DETAILS

NB - ALL DISTURBED AREAS TO BE TERRASEEDED

### UPLAND PLANTING ZONE

NO-MOW ZONE (INCLUDING ACCESS ROAD) APPROXIMATELY 5,500 sq/m (+10%) (+/- MEASUREMENTS TO BE

SIMCOE COUNTY NATIVE UPLAND MIXTURE

- 2% NEW ENGLAND ASTER (Aster novae-anglaie) 12% BLACK EYED SUSAN (Rudbeckia hirta)
- 20% SAND DROPSEED (Sporobolus crytandrus 20% CANADA WILD RYE (Elymus candadensis)
- 4% CANADA GOLDEN ROD (Solidago canadensis 5% COMMON MILKWEED (Asclepias syriaca)
- 1% WILD BERGAMONTE (Monarda Fistulosa
- 1% SMOOTH BLUE ASTER (Aster laevis) 15% LITTLE BLUE STEM (Andropogon scoparius)

20% INDIANGRASS (Sorghastrum nutans)

SUPPLIED BY - OSC SEEDS 1-519-886-0557 ANNUAL RYE NURSE CROP TO BE APPLIED AT TIME OF NATIVE UPLAND PLANTING MIXTURE AT A RATE OF 12kg PER HECTARE. REFER TO TERRASEEDING NOTES AND MULCH APPLICATION SPECIFICATIONS IN THIS BOX FOR FURTHER DETAILS.

#### TERRASEEDING APPLICATION SPECIFICATIONS

ECOBLANKET OR TERRASEEDING TACTIFIER / FLEXGUARD HYDROMULCH SHALL BE APPLIED AS PER MANUFACTURER SPECIFICATIONS. SEE NOTES ON THIS PAGE.

MINIMUM DEPTH OF 0.45m FOR TERRESTRIAL AREAS EXCEPT THE ACCESS ROAD BASE (5cm) AND MINIMUM 0.35m FOR TEMPORARY UNDERWATER AREAS. TOPSOIL OUALITY SHALL BE AS PER OPSS 570, IT SHALL BE TESTED BY AN INDEPENDENT LABORATORY PRIOR TO

SEEDING AND TOP SOIL NOTES

IN THE SWM POND AREA TOPSOIL SHALL BE PROVIDED TO A

CLIENT REVIEW December 6<sup>th</sup>, 2022 StT AS PER TOWN COMMENTS December 27<sup>th</sup>, 2023 StT AS PER TOWN COMMENTS May 28th, 2024 AS PER TOWN COMMENTS August 1st, 2024 AS PER UPDATED SITE PLAN November 14th, 2024 StT

CONTRACTOR IS RESPONSIBLE FOR ALL LOCATES INCLUDING ALL

UNDERGROUND SERVICES PRIOR TO ANY EXCAVATION OR INSTALLATIONS.

ANY ACCOMPANYING DOCUMENTATION RELATING TO THE LANDSCAPE

PLAN AND/OR PRESERVATION PLAN SUCH AS TENDER DOCUMENTS AND

CHANGE NOTICES ARE TO BE ENDORSED BY LDB ASSOCIATES LIMITED

PRIOR TO THE BEGINNING OF ANY SITE WORKS. IN THE EVENT THAT OF A

IT IS THE RESPONSIBILITY OF THE PERSON OR PERSONS RESPONSIBLE FOR

THE CONSTRUCTED WORKS TO NOTIFY THE LANDSCAPE ARCHITECT WHEN

SCHEDULED MEETINGS SHALL TAKE PLACE AT THE CLOSEST MUTUALLY

DATE APRV

COMPANIES 48 HOURS PRIOR TO THE COMMENCEMENT OF ANY WORK.

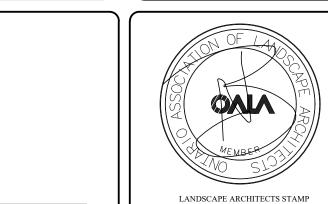
DISCREPANCY THE DRAWING SHALL BE ASSUMED CORRECT.

PREPARED FOR ANY REQUIRED INSPECTIONS AND SIGN OFFS.

THE CONTRACTOR IS REQUIRED TO NOTIFY THE VARIOUS UTILITY

ALL DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND ARE THE PROPERTY OF JDB ASSOCIATES LIMITED. DRAWINGS ARE NOT TO BE MODIFIED AND/OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF JDB ASSOCIATES LIMITED. REPRODUCTION OF DRAWINGS IN ANY FORM WITHOUT THE CONSENT OF JDB ASSOCIATES LIMITED VOIDS THE DRAWING AT WHICH TIME JDB ASSOCIATES LIMITED ACCEPTS NO LIABILITY FOR THE DRAWING CONTENT OR WORKS RESULTING FROM SAID REPRODUCTION DRAWINGS MAY BE REPRODUCED BY MUNICIPAL AND GOVERNMEN' AGENCIES RESPONSIBLE FOR APPROVALS FOR THEIR OWN USE. JDB ASSOCIATES RESERVES THE RIGHT TO WITHDRAW ANY DRAWING(S) FROM GOVERNMENT OR MUNICIPAL AGENCIES WHETHER APPROVED OR NOT IN THE EVENT THAT ACCOUNTS ARE NOT SETTLED OR REMAIN OUTSTANDING

IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY ALL DIMENSIONS ON THE SITE AND REPORT ANY DISCREPANCIES OR VARIATIONS FROM THE SUPPLIED INFORMATION TO THE LANDSCAPE ARCHITECT WITH THE PROJECT. JDB ASSOCIATES LIMITED IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, ARCHITECTURAL, MECHANICAL, ENGINEERING OR ELECTRICAL INFORMATION SHOWN ON THE DRAWING. FOR FURTHER INFORMATION REFER TO APPROPRIATE SURVEY, ARCHITECTURAL, MECHANICAL, ENGINEERING OR ELECTRICAL DRAWINGS PRIOR TO PROCEEDING WITH ANY WORKS.


THIS DRAWING IS NOT TO BE SCALED.

**GENERAL NOTES** 

BASE PLAN REVISED: MARCH. 2022 Client info:

IPS- INNOVATIVE PLANNING SOLUTIONS 647 Welham Road, Unit 9A, Barrie, ON,

ACCEPTED BY



L4N 0B7

JDB associates LTD. Urban Designers

Arborists274 Burton Ave., Suite 1201 Barrie, Ontario



LOT 31 CLARK ST

Town of the Blue Mountains, ON

LANDSCAPE PLAN DETAILS

L4N 5W4

REVIEWED BY: NTS TOWN FILE No. OUR FILE REF. # LP-2

BLOWN ON COMPOSTED ORGANICS INJECTED WITH MICRO BLEND WITH SEED MIX MIN. 25mm (1") APPLICATION ON SLOPE UP TO 3:1 (H:V) MIN. 50mm (2") APPLICATION ON SLOPES 3:1 TO 2:1 (H:V) POTTED PLANTS TO BE INSTALLED PRIOR TO ECO-BLANKET APPLICATION BARE ROOT PLANTS INSTALLED PRIOR TO ECO-BLANKET APPLICATION -NO FOOT TRAFFIC ON ECO-BLANKET FOR ONE FULL GROWING SEASON AFTER

storm water conveyance systems

This work shall consist of furnishing, constructing and maintaining an EcoBlanket( to Rexius specifications. EcoBlanket is a ground cover (surface blanket) of the Rexius specified compost/mulch (Erosion Blend) combined with a special additive (Microblend) constructed with a pneumatic blower to control and reduce soil erosion. An EcoBlanket stabilizes the soil, prevents splash, sheet and rill erosion, and removes suspended soil particles and contaminants from water moving off the site and into adjacent waterways or

1.1. This EcoBlanket must be applied by Landsource Organix Ltd., 100 Britannia Road East, Hornby, Ontario L0P 1E0, tollfree 1 877 548 8558 (toll free fax 1 877 548 8559) or equivalent certified EcoBlanket installer 1.2. Materials must be applied using a pneumatic blower unit complete with a supplemental granular injection system capable of installing at least 15 cubic meters per hour.

1.3. Contractor must have at least 3 years of proven experience in successfully installing EcoBlanketsTM.

The EcoBlanket filtering material consists of the Rexius Erosion Blend of compost and mulch materials, according to the Rexius particle sizing specifications, in combination with the Rexius Microblend additive.

2.1. Particle size must meet exact specifications of the Rexius EcoBlanket Erosion Blend material supplied by a certified supplier/installer 2.2. The compost portion of EcoBlanket shall be derived from well-decomposed organic matter source produced by controlled aerobic (biological) decomposition that has been sanitized through the generation of heat and stabilized to the point that it is appropriate for this particular application. Compost material shall be processed through proper thermophilic composting, meeting the Canadian Council of Ministers of the Environment's (CCME) definition for a 'process to further reduce pathogens' (PFRP). The compost portion shall meet the chemical, physical and biological properties (as outlined in the chart on reverse). These and all other required properties for the performance of the EcoBlanket are included in the Rexius EcoBlanket Manufacture Guidelines followed by certified suppliers/installers. 2.3. Rexius Microblend additive shall be injected into Erosion Blend material at time of EcoBlanket construction.

2.4. A proof of certification as an EcoBlanket supplier shall be submitted to the Landscape Architect for approval prior to installation. Test results for EcoBlanket performance shall be made available upon request. 2.5. Where seeding or planting is planned, Erosion Blend material must meet Rexius' minimum specification requirements for seeding purposes.

1. The EcoBlanket shall be placed as shown on the plans or as directed by the Landscape Architect.

3.2. On areas with slopes 3:1 to 2:1 (H:V) the EcoBlanket shall be uniformly applied directly at the soil surface with a pneumatic blower as specified by Rexius. EcoBlanket shall be applied at a depth of 50 mm minimum and approximately 90 cm over the top of the slope, or overlap it into existing vegetation. On areas with slopes up to 3:1(H:V) the EcoBlanket shall be applied at a depth of 25mm minimum. In extreme conditions and where specified by the Engineer/Landscape Architect., EcoBerms shall be added and constructed at the top of the slope in parallel intervals down the profile of the slope (6 metres to 9 metres apart) if necessary. (The Engineer/Landscape Architect shall specify

3.3. Rexius Microblend shall be applied/injected at a minimum rate of 615 kgs. per hectare (or as specified by Rexius), to be confirmed by inspector/project manager. 3.4. EcoBlanket application depth may be modified based on specific site (e.g., soil characteristics, existing vegetation) and climatic conditions, as well as particular project related requirements. The severity of slope grade, as well as slope length will also influence the addition of EcoBerms and number of EcoBerm placements in combination with 3.5. If temporary or long-term vegetation is required, Erosion Blend material may be injected with seed during application. The Engineer/Landscape Architect shall specify seed

requirements and the compost/mulch component shall abide by the minimum standards set by Rexius for seeding 3.6. Where vegetation is to be established, slightly roughen (scarify) slopes and remove large clods, rocks, stumps, roots larger than 50 mm in diameter and debris on slopes. This soil preparation step may be eliminated where approved by the Landscape Architect/Designer, or where seeding or planting is not planned. Where practical, track (compact) perpendicular to contours on the slope using a bulldozer before applying EcoBlanket injected with seed. 3.7. Do not use EcoBlankets in areas of concentrated flow (ie. ditches, streams, etc.)

3.8. Unless otherwise allowed by Landscape Architect, seeding shall be performed within the local region's seeding deadlines.

The Contractor shall maintain the EcoBlanket in a functional condition at all times. Contractor shall make periodic inspections of the EcoBlanket for effectiveness and shall immediately correct all deficiencies. Where deficiencies exist, additional EcoBlanket material shall be installed immediately to required depth.

5.0 Method of Measurement:

EcoBlanket shall be measured by the square metre, complete in place.

6.1. Place EcoBlankets on denuded areas immediately or as directed by Landscape Architect. EcoBerms and/or temporary or permanent vegetation shall be applied/established when necessary, along with other appropriate structural measures and controls, for additional erosion and sediment control. 6.2. The work specified in this Section consists of designing, providing, and maintaining erosion and sedimentation controls as necessary. All existing and foreseeable future conditions that affect the work inside and outside the site limits must be acknowledged as the Contractor's responsibility.

6.3. Contractor is responsible for providing effective sediment control measures based on performance. Contractor may, with approval from the Landscape Architect, work outside the minimum construction requirements to establish a working erosion control system.

Parameters 1,4 Reported as (units of measure) EcoBlanket to be Vegetated EcoBlanket to be left Un-vegetated PH2 pH units 5.0 - 8.5 N/A Soluble Salt Concentration2 (electrical conductivity) ds/m (mmhos/cm) Maximum 5 N/A

1. Recommended test methodologies are provided in Test Methods for the Examination of Composting and Compost (SCC through BNQ) 2. Each specific plant species requires a specific pH range. Each plant also has a salinity tolerance rating, and maximum tolerable quantities are known. When specifying the establishment of any plant or turf species, it is important to understand their pH and soluble salt requirements, and how they relate to the compost in use. 3. Stability/Maturity rating is an area of compost science that is still evolving, and as such, other various test methodscould be considered. Also, never base compost quality conclusions on the result of a single stability/maturity test.

- INSPECTION AND WARRANTY 1. GIVE TIMELY NOTICE TO THE LANDSCAPE ARCHITECT FOR THE REQUIRED START UP SITE INSPECTION TO REVIEW SITE CONDITIONS
- 3. THE LANDSCAPE ARCHITECT RESERVES THE RIGHT TO REJECT ANY PLANTS, WHETHER INSTALLED OR NOT, WHICH DO NOT CONFORM TO THE SPECIFICATIONS AND/OR SITE DRAWING. REMOVE ALL REJECTED PLANTS FROM THE SITE IMMEDIATELY. DO NOT REMOVE ANY LABELS FROM PLANTS UNTIL PLANTS HAVE BEEN INSPECTED AND APPROVED
- 5. FINAL ACCEPTANCE OF THE PROJECT WILL BE CARRIED OUT UPON COMPLETION OF ALL WORK INCLUDED IN THE CONTRACT.

## TOPSOIL REQUIREMENTS (LANDSCAPING AREAS)

- 18 m<sup>3</sup> FOR LARGE TREES - 12 m<sup>3</sup> FOR SMALL TREES
- SIX PARTS OF FERTILE LOAM SOIL (50-60% SAND, 20-40% SILT, 6-10% CLAY, 2-5% ORGANIC), WITH A pH OF 7.5\* OR LESS, FREE OF CLAY LUMPS, DEBRIS, TOXIC SUBSTANCES, STONES, WOODY MATERIAL, WEED SEEDS AND GRASS ROOTS
- ONE PART OF WELL-ROTTED FARM MANURE
- 8. PREPARED SOIL MIXTURE FOR SOD AREAS SHALL CONSIST OF MIN. 20cm HIGH QUALITY SOIL: SIX PARTS OF FERTILE LOAM SOIL (50-60% SAND, 20-40% SILT, 6-10% CLAY, 2-5% ORGANIC), WITH A pH OF 7.5\* OR LESS, FREE OF CLAY LUMPS, DEBRIS, TOXIC SUBSTANCES, STONES, WOODY MATERIAL,

ALL TREES ARE TO BE STAKED OR GUY WIRED ACCORDING TO DETAILS PROVIDED. NO ACCESSIBLE OPEN HOLE TREE PITS SHALL BE PERMITTED OVERNIGHT. WEED SEEDS AND GRASS ROOTS . REMOVE BURLAP AND ROPE FROM THE TOP 1/3 OF ROOT BALLS. . WATER AT TIME OF PLANTING AND WHENEVER DEEMED NECESSARY TO MAINTAIN THE TREES IN A

ALL PLANT MATERIALS WHICH CAN NOT BE PLANTED IMMEDIATELY UPON ARRIVAL ON SITE SHALL BE PROPERLY HEELED IN OR WELL PROTECTED WITH SOIL OR SIMILAR MATERIALS TO PREVENT DRYING OUT AND SHALL BE KEPT MOIST UNTIL COMMENCEMENT OF PLANTING

VERIFY ALL EXISTING SITE CONDITIONS AND REPORT ANY DISCREPANCIES BEFORE COMMENCING WORK.

TO SERVICES, EXISTING VEGETATION OR ANY OTHER FEATURES TO BE RETAINED.

SOD AREAS TO RECEIVE 200MM DEPTH OF TOPSOIL UNLESS OTHERWISE INDICATED.

AND REPLACED AS PER TOPSOIL REOUIREMENTS.

PLANT MATERIAL REQUIREMENTS

UNLESS OTHERWISE STATED

IN THE PLANT SCHEDULE

ASSUMED TO BE CORRECT.

THE CONTRACTOR SHALL VERIFY THE LOCATION OF ALL UTILITIES AND IS RESPONSIBLE FOR ANY DAMAGE

FOR ALL AREAS OF DISTURBANCE: NATIVE TOPSOIL IS TO BE STRIPPED, STOCK PILED, LABORATORY TESTED

UNIFORM SPECIMENS. NO SUBSTITUTIONS WILL BE PERMITTED WITHOUT WRITTEN APPROVAL FROM THE

DECIDUOUS TREES SHALL HAVE A STRAIGHT CENTRAL LEADER AND WELL BRANCHED 1.5M ABOVE GRADE

CONIFEROUS TREES SHALL HAVE A STRAIGHT CENTRAL LEADER AND DENSELY BRANCHED TO WITHIN 0.3m

PLANT MATERIAL TO BE NO.1 GRADE NURSERY STOCK. UNSATISFACTORY STOCK WILL BE REFUSED ON THE

SOD TO BE CANADA NO.1 NURSERY SOD, MEETING ONTARIO SOD GROWERS ASSOCIATION STANDARDS. ALL

. ALL PLANT MATERIAL WHICH ARE SPECIFIED BY O.C. (ON CENTER SPACING) ARE TO BE PLANTED AS NOTED

ALL TREE PITS SHALL INCLUDE TREATMENT WITH MICORRHIZAL FUNGLOF THE WALLS BEFORE PLANTING

LOCATIONS FOR PLANT MATERIAL AND PLANTING BEDS ARE TO BE MARKED OR STAKED OUT BY THE

CONTRACTOR AND APPROVED BY THE LANDSCAPE ARCHITECT AND MUNICIPAL STAFF PRIOR TO

. IN THE EVENT OF A DISCREPANCY BETWEEN THE PLANT LIST AND DRAWING, THE DRAWING WILL BE

ALL MASS PLANTINGS OF SHRUBS SHALL BE IN CONTINUOUS BEDS AND MULCHED AS SPECIFIED.

(2L OF "MIKE" OR SIMILAR PRODUCT SHALL BE USED FOR EACH 60MM CALIPER TREE)

ALL PLANTING MATERIAL AND OPERATIONS TO MEET OR EXCEED THE HORTICULTURAL STANDARDS OF THE CANADIAN NURSERY LANDSCAPE ASSOCIATION AND THE HORTICULTURAL TRADES ASSOCIATION. ALL

PLANT MATERIAL LISTED IN THE PLANT SCHEDULE ARE MINIMUM SIZES +/- NURSERY GROWN AND

NO ACCESSIBLE OPEN HOLE TREE PITS SHALL BE PERMITTED OVERNIGHT. ALL OPEN PITS SHALL BE ADEQUATELY PROTECTED BY BARRIERS OR FILLED IN WITH SOIL PRIOR TO THE END OF EACH PLANTING

9. ALL NEW WORK TO BLEND NEATLY AND SMOOTHLY WITH EXISTING CONDITIONS.

SITE CONDITIONS

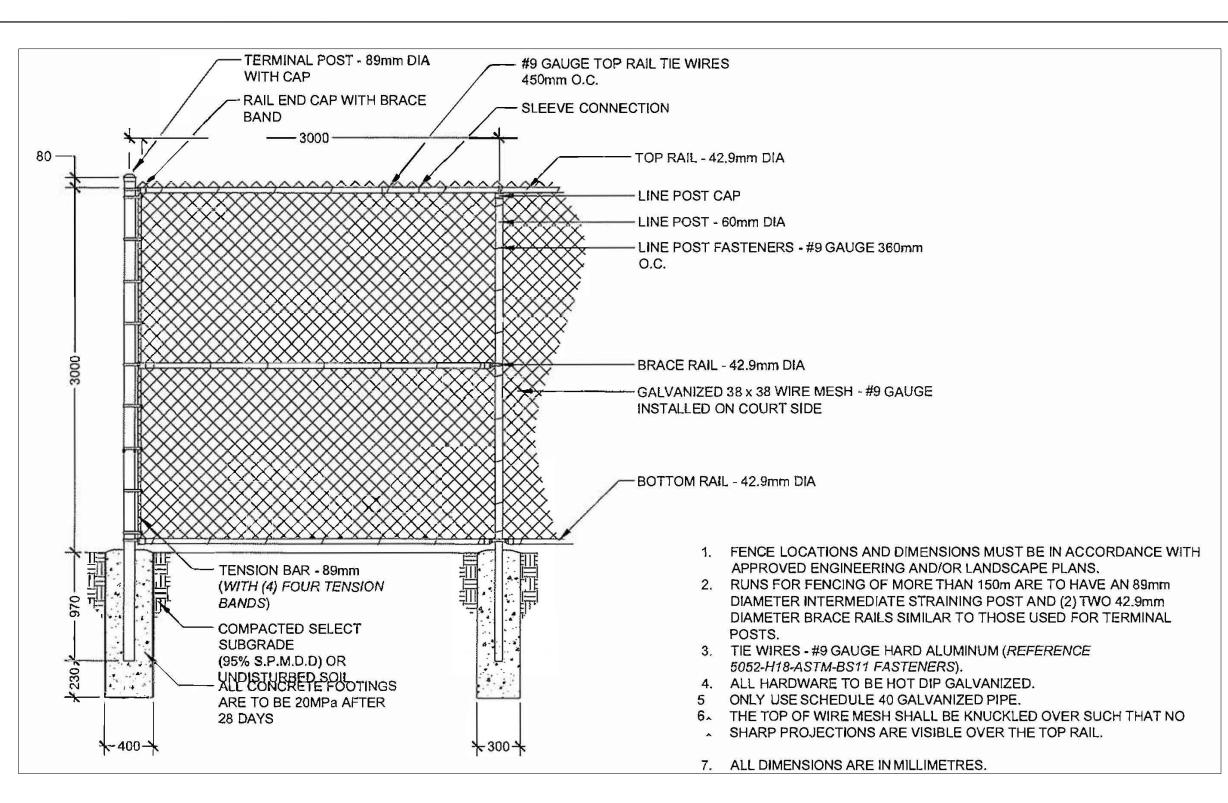
PLANTING NOTES

- AND SCHEDULE FOLLOW UP INSTALLATIONS
- 2. INSTALLATION OF PLANT MATERIAL PRIOR TO INSPECTION BY THE LANDSCAPE ARCHITECT WILL BE THE CONTRACTOR'S RESPONSIBILITY.
- BY THE LANDSCAPE ARCHITECT
- 4. ALL PLANT MATERIAL AND WORKMANSHIP WILL BE INSPECTED AND IS UNDER WARRANTY FOR A MINIMUM OF TWO YEAR FROM DATE OF WRITTEN ACCEPTANCE. ALL PLANT MATERIAL MUST BE IN A HEALTHY, VIGOROUS GROWING CONDITION SATISFACTORY TO THE CONTRACT ADMINISTRATOR AT THE END OF THE WARRANTY PERIOD
- OR BE REPLACED AT THE CONTRACTORS EXPENSE.

- 6. PROVIDE MINIMUM SOIL VOLUME PER TREE AT 0.45m DEPTH FOR STREET TREES (OR ABOVE UTILITIES) AND MAX. 0.9m IN OTHER
- 7. PREPARED SOIL MIXTURE FOR EACH TREE PITS AND SHRUBS SHALL CONSIST OF HIGH OUALITY SOIL
- ONE PART COARSE PULVERIZED CANADIAN PEAT MOSS

PLANTING NOTES (REFER TO "SEEDING AND TOPSOIL NOTES" ON THIS PAGE FOR THE SWM POND AREA)

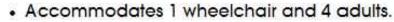
- BASE OF PLANTS TO BE SITUATED FLUSH WITH FINISH GRADE OF ECO-BLANKET


PREPARED SURFACE

Stability3 Carbon Dioxide Evolution Rate mg CO2-C per g OM per day < 8 N/A Physical Contaminants (man-made inerts) % dry weight basis < 1 < 1

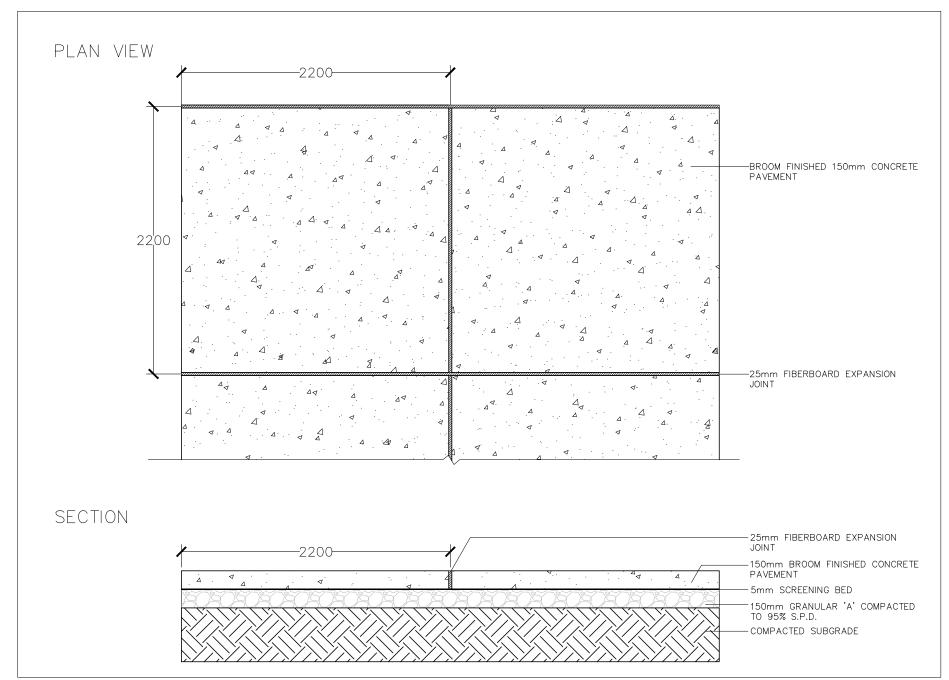
DETAIL ADAPTED FROM LANDSOURCE ORGANIX EcoBlanket (tel.:1-877-548-8558)

4. Landscape Architect may modify the allowable compost specification ranges based on specific field conditions and plant requirements.

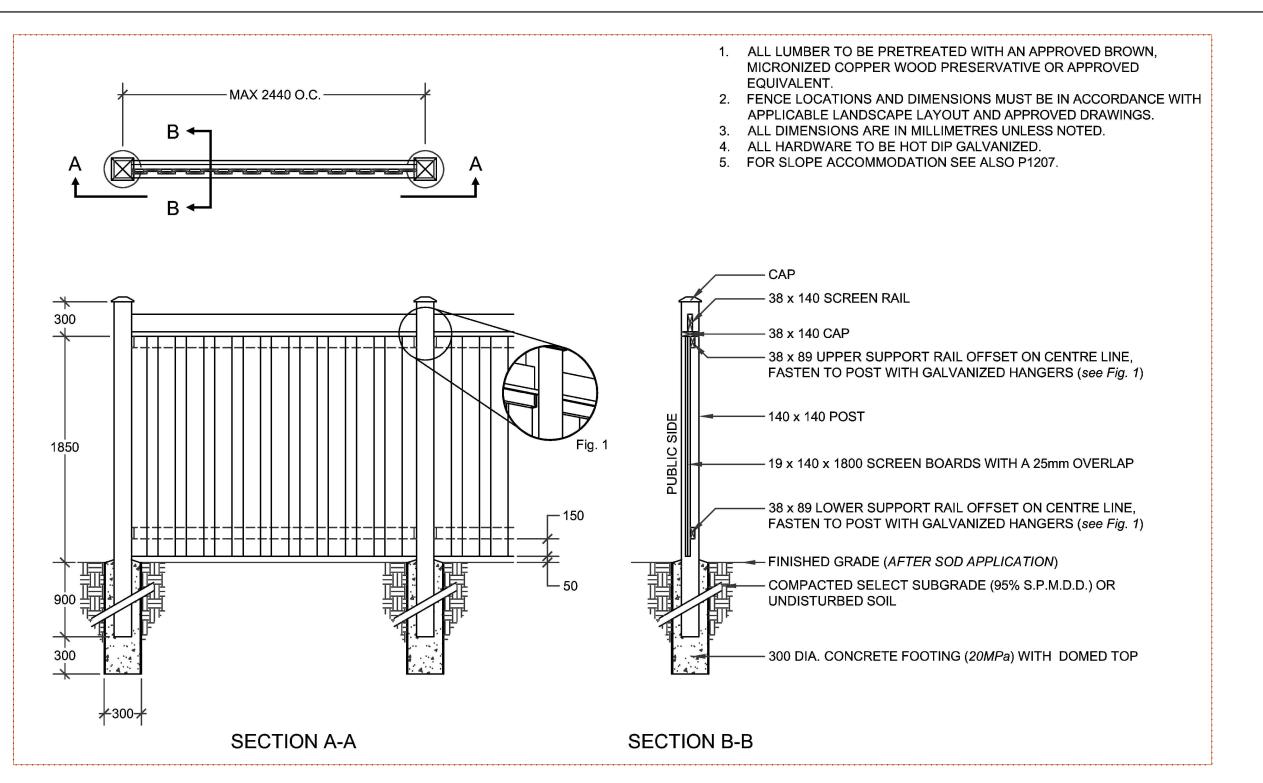

ECOBLANKET SPECIFICATIONS AND DETAIL



SECURITY CHAIN LINK FENCE DETAIL - black vinyl coated


# ADA Hex Recycled Plastic Picnic Table - 46", Cedar

Virtually maintenance free! Recommended for warehouse patios, campgrounds, schools and parks.




- 100% recycled UV-protected plastic won't rot, splinter or crack. Withstands harsh weather.
- Natural-looking wood material never needs sanding, sealing, painting or staining.
- Durable 2" thick planks predrilled for easy assembly.
- H-6681 Mounting Hardware available.


PICNIC BENCH U-LINE MODEL H-6575 ON CONCRETE PAD (BELOW)



CONCRETE PAD DETAIL (typ.)



GARBAGE ENCLOSURE FENCE DETAIL



GATE DETAIL (typ.) - GATE STYLE TO MATCH THE FENCE STYLE AND SPECS.

SHOP DRAWING TO BE PROVIDED TO THE LANDSCAPE ARCHITECT FOR APPROVAL BEFORE CONSTRUCTION



#### GENERAL NOTES

CONTRACTOR IS RESPONSIBLE FOR ALL LOCATES INCLUDING ALL UNDERGROUND SERVICES PRIOR TO ANY EXCAVATION OR INSTALLATIONS. THE CONTRACTOR IS REQUIRED TO NOTIFY THE VARIOUS UTILITY COMPANIES 48 HOURS PRIOR TO THE COMMENCEMENT OF ANY WORK.

ANY ACCOMPANYING DOCUMENTATION RELATING TO THE LANDSCAPE PLAN AND/OR PRESERVATION PLAN SUCH AS TENDER DOCUMENTS AND CHANGE NOTICES ARE TO BE ENDORSED BY J.D.B. ASSOCIATES LIMITED PRIOR TO THE BEGINNING OF ANY SITE WORKS. IN THE EVENT THAT OF A DISCREPANCY THE DRAWING SHALL BE ASSUMED CORRECT.

IT IS THE RESPONSIBILITY OF THE PERSON OR PERSONS RESPONSIBLE FOR THE CONSTRUCTED WORKS TO NOTIFY THE LANDSCAPE ARCHITECT WHEN PREPARED FOR ANY REQUIRED INSPECTIONS AND SIGN OFFS.

SCHEDULED MEETINGS SHALL TAKE PLACE AT THE CLOSEST MUTUALLY CONVENIENT TIME.

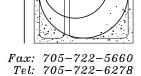
| No. | REVISION                 | DATE                             | APRVD |
|-----|--------------------------|----------------------------------|-------|
| 1.  | CLIENT REVIEW            | December 6 <sup>th</sup> , 2022  | StT   |
| 2.  | AS PER TOWN COMMENTS     | December 27 <sup>th</sup> , 2023 | StT   |
| 3.  | AS PER TOWN COMMENTS     | May 28 <sup>th</sup> , 2024      | StT   |
| 4.  | AS PER TOWN COMMENTS     | August 1st, 2024                 | StT   |
| 5.  | AS PER UPDATED SITE PLAN | November 14th, 2024              | StT   |
|     |                          |                                  |       |
|     |                          |                                  |       |
|     |                          |                                  |       |
|     |                          |                                  |       |
|     |                          |                                  |       |

ALL DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND ARE THE PROPERTY OF JDB ASSOCIATES LIMITED. DRAWINGS ARE NOT TO BE MODIFIED AND/OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF JDB ASSOCIATES LIMITED. REPRODUCTION OF DRAWINGS IN ANY FORM WITHOUT THE CONSENT OF JDB ASSOCIATES LIMITED VOIDS THE DRAWING AT WHICH TIME JDB ASSOCIATES LIMITED ACCEPTS NO LIABILITY FOR THE DRAWING CONTENT OR WORKS RESULTING FROM SAID REPRODUCTION. DRAWINGS MAY BE REPRODUCED BY MUNICIPAL AND GOVERNMENT AGENCIES RESPONSIBLE FOR APPROVALS FOR THEIR OWN USE. JDB ASSOCIATES RESERVES THE RIGHT TO WITHDRAW ANY DRAWING(S) FROM GOVERNMENT OR MUNICIPAL AGENCIES WHETHER APPROVED OR NOT IN THE EVENT THAT ACCOUNTS ARE NOT SETTLED OR REMAIN OUTSTANDING.

IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY ALL DIMENSIONS ON THE SITE AND REPORT ANY DISCREPANCIES OR VARIATIONS FROM THE SUPPLIED INFORMATION TO THE LANDSCAPE ARCHITECT WITH THE PROJECT. JDB ASSOCIATES LIMITED IS NOT RESPONSIBLE FOR THE ACCURACY OF SURVEY, ARCHITECTURAL, MECHANICAL, ENGINEERING OR ELECTRICAL INFORMATION SHOWN ON THE DRAWING. FOR FURTHER INFORMATION REFER TO APPROPRIATE SURVEY, ARCHITECTURAL, MECHANICAL, ENGINEERING OR ELECTRICAL DRAWINGS PRIOR TO PROCEEDING WITH ANY WORKS.

THIS DRAWING IS NOT TO BE SCALED.




ACCEPTED BY:



JDB associates LTD.

Urban Designers Landscape Architects Arborists

274 Burton Ave., Suite 1201 Barrie, Ontario L4N 5W4



Tel: 705-722-62

LOT 31 CLARK ST

Town of the Blue Mountains, ON

LANDSCAPE/ RESTORATION PLANTING PLAN

| SCALE:        | DESIGNED BY:             | REVIEWED BY: |  |  |  |  |
|---------------|--------------------------|--------------|--|--|--|--|
| 1:600         | IT                       | NB           |  |  |  |  |
| TOWN FILE No. | OUR FILE REF. #<br>14-22 | LP-3         |  |  |  |  |

Appendix I – Sanitary Design

| Project:        | Lot 31 Clark Street        |
|-----------------|----------------------------|
| Municipality:   | Town of the Blue Mountains |
| Project No.:    | 2021-185                   |
| Analyzed by:    | KG                         |
| Date:           | November 18, 2024          |
| Manning n Value | 0.013                      |

#### Sanitary Sewer Design Sheet

#### Town of the Blue Mountains



|                              | DESIGN SEWAGE FLOWS                              |                          |                          |                                              |                   |                     |                  |                                   |                                        |                           | SANITARY SEWER CAPACITY |                        |                    |                           |                              |                 |  |
|------------------------------|--------------------------------------------------|--------------------------|--------------------------|----------------------------------------------|-------------------|---------------------|------------------|-----------------------------------|----------------------------------------|---------------------------|-------------------------|------------------------|--------------------|---------------------------|------------------------------|-----------------|--|
| Location of Section          | Cumulative<br>Sanitary<br>Catchment<br>Area (ha) | From<br>Upstream<br>MH # | To<br>Downstream<br>MH # | Cumulative<br>Serviced<br>Population<br>Cap. | Peaking<br>Factor | Average Flow<br>L/s | Peak Flow<br>L/s | Peak Flow<br>Infiltration:<br>L/s | Total Peak Flow<br>Infiltration<br>L/s | Total<br>Peak Flow<br>L/s | Pipe<br>Length<br>m     | Pipe<br>Diameter<br>mm | Pipe<br>Grade<br>% | Full Flow.<br>Cap.<br>L/s | Full Flow<br>Velocity<br>m/s | Percentage Full |  |
| Bulding H                    | 0.38                                             | Building H               | MH01A                    | n/a                                          | 4.50              | 0.21                | 0.95             | 0.087                             | 0.087                                  | 1.04                      | 15.0                    | 150                    | 2.00               | 21.5                      | 1.22                         | 4.82%           |  |
| Internal Access Road         | 0.98                                             | MH01A                    | MH02A                    | n/a                                          | 4.50              | 0.54                | 2.45             | 0.225                             | 0.225                                  | 2.68                      | 15.1                    | 200                    | 1.00               | 32.8                      | 1.04                         | 8.16%           |  |
| Internal Access Road         | 1.06                                             | MH02A                    | MH03A                    | n/a                                          | 4.50              | 0.59                | 2.65             | 0.244                             | 0.244                                  | 2.89                      | 82.7                    | 200                    | 0.50               | 23.2                      | 0.74                         | 12.48%          |  |
| Internal Access Road         | 2.06                                             | MH03A                    | MH04A                    | n/a                                          | 4.50              | 1.14                | 5.15             | 0.474                             | 0.474                                  | 5.62                      | 81.7                    | 200                    | 0.50               | 23.2                      | 0.74                         | 24.25%          |  |
| Internal Access Road         | 2.23                                             | MH04A                    | MH05A                    | n/a                                          | 4.50              | 1.24                | 5.58             | 0.513                             | 0.513                                  | 6.09                      | 70.4                    | 200                    | 0.50               | 23.2                      | 0.74                         | 26.25%          |  |
| Internal Access Road         | 2.23                                             | MH05A                    | MH06A                    | n/a                                          | 4.50              | 1.24                | 5.58             | 0.513                             | 0.513                                  | 6.09                      | 26.2                    | 200                    | 3.00               | 56.8                      | 1.81                         | 10.72%          |  |
| Grey Road 2                  | 2.23                                             | MH06A                    | MH09A                    | n/a                                          | 4.50              | 1.24                | 5.58             | 0.513                             | 0.513                                  | 6.09                      | 27.2                    | 200                    | 0.50               | 23.2                      | 0.74                         | 26.25%          |  |
| Grey Road 2                  | 0.25                                             | MH07A                    | MH08A                    | n/a                                          | 4.50              | 0.14                | 0.63             | 0.058                             | 0.058                                  | 0.68                      | 44.9                    | 200                    | 0.50               | 23.2                      | 0.74                         | 2.94%           |  |
| Grey Road 2                  | 0.25                                             | MH08A                    | MH09A                    | n/a                                          | 4.50              | 0.14                | 0.63             | 0.058                             | 0.058                                  | 0.68                      | 32.8                    | 200                    | 0.50               | 23.2                      | 0.74                         | 2.94%           |  |
| Grey Road 2                  | 2.73                                             | MH09A                    | MH10A                    | n/a                                          | 4.50              | 1.52                | 6.83             | 0.628                             | 0.628                                  | 7.45                      | 36.6                    | 200                    | 0.50               | 23.2                      | 0.74                         | 32.14%          |  |
| Hwy. 26                      | 2.73                                             | MH10A                    | MH11A                    | n/a                                          | 4.50              | 1.52                | 6.83             | 0.628                             | 0.628                                  | 7.45                      | 89.5                    | 200                    | 0.50               | 23.2                      | 0.74                         | 32.14%          |  |
| Hwy. 26                      | 2.73                                             | MH11A                    | EX. SAN MH1              | n/a                                          | 4.50              | 1.52                | 6.83             | 0.628                             | 0.628                                  | 7.45                      | 5.3                     | 200                    | 0.50               | 23.2                      | 0.74                         | 32.14%          |  |
| Cedar Run Wakeboard Cable Pk | 5.00                                             | Future Site              | EX. SAN MH1              | n/a                                          | 4.50              | 0.07                | 0.32             | 1.150                             | 1.150                                  | 1.47                      | 100.0                   | 200                    | 0.50               | 23.2                      | 0.74                         | 6.32%           |  |
| Hwy. 26                      | 7.73                                             | Ex. SAN MH1              | Ex. SAN MH2              | n/a                                          | 4.50              | 1.59                | 7.14             | 1.778                             | 1.778                                  | 8.92                      | 101.2                   | 250                    | 0.35               | 35.2                      | 0.72                         | 25.35%          |  |
| Hwy. 26                      | 7.73                                             | Ex. SAN MH2              | Ex. SAN MH3              | n/a                                          | 4.50              | 1.59                | 7.14             | 1.778                             | 1.778                                  | 8.92                      | 81.0                    | 250                    | 0.36               | 35.7                      | 0.73                         | 25.00%          |  |
| Hwy. 26                      | 7.73                                             | Ex. SAN MH3              | Ex. SAN MH4              | n/a                                          | 4.50              | 1.59                | 7.14             | 1.778                             | 1.778                                  | 8.92                      | 61.0                    | 250                    | 0.26               | 30.3                      | 0.62                         | 29.41%          |  |
| Hwy. 26                      | 7.73                                             | Ex. SAN MH4              | Ex. SAN MH5              | n/a                                          | 4.50              | 1.59                | 7.14             | 1.778                             | 1.778                                  | 8.92                      | 67.0                    | 250                    | 0.31               | 33.1                      | 0.67                         | 26.94%          |  |
| Hwy. 26                      | 7.73                                             | Ex. SAN MH5              | Ex. SAN MH6              | n/a                                          | 4.50              | 1.59                | 7.14             | 1.778                             | 1.778                                  | 8.92                      | 72.0                    | 250                    | 0.31               | 33.1                      | 0.67                         | 26.94%          |  |
| Hwy. 26                      | 7.73                                             | Ex. SAN MH6              | Ex. SAN MH7              | n/a                                          | 4.50              | 1.59                | 7.14             | 1.778                             | 1.778                                  | 8.92                      | 92.0                    | 250                    | 2.25               | 89.2                      | 1.82                         | 10.00%          |  |
| Hwy. 26                      | 7.73                                             | Ex. SAN MH7              | Ex. SAN MH8              | n/a                                          | 4.50              | 1.59                | 7.14             | 1.778                             | 1.778                                  | 8.92                      | 117.0                   | 250                    | 0.44               | 39.4                      | 0.80                         | 22.61%          |  |
| Lakeshore Road E.            |                                                  | Ex. SAN MH8              | Ex. SAN MH               | n/a                                          |                   | <u> </u>            | **Measured Peal  | Flow of 8.0L/s                    | <br> -  accumulated here               | 16.92                     | 72.0                    | 450                    | 0.30               | 156.1                     | 0.98                         | 10.83%          |  |
| Lakeshore Road E.            |                                                  | Ex. SAN MH               | Ex.SPS                   | n/a                                          |                   |                     |                  |                                   |                                        | 24.92                     | 8.0                     | 450                    | 0.30               | 156.1                     | 0.98                         | 15.96%          |  |

NOTE:

AVERAGE DAILY PER CAPITA FLOW = 20,000 L/ha/day (light industrial land)

EXTRANEOUS FLOW ALLOWANCE = 0.23 L/sec/gross hectare

PEAKING FACTOR: Assumed 4.5 (max. recommended by the Town)

MANNING "n" = 0.013